Sparsity Based Correlation Models

for Joint Reconstruction of
Compressed Images

Master Thesis
Markus B. Schenkel

Signal Processing Laboratory 4
Swiss Federal Institute of Technology
Lausanne, Switzerland

February 2010



(© 2010 by Markus B. Schenkel
markus.schenkel@epfl.ch

Cover: A parsimonious view of the Photographer.


mailto:markus.schenkel@epfl.ch

(Pr

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Sparsity Based Correlation Models
for Joint Reconstruction of
Compressed Images

Markus B. SCHENKEL

Master thesis project supervised by

Prof. Dr. Pascal FROSSARD Dr. Feng Wu
Signal Processing Laboratory 4 and Internet Media Group
Swiss Federal Institute of Technology Microsoft Research Asia
Lausanne, Switzerland Beijing, China

2010-02-26


mailto:markus.schenkel@epfl.ch
mailto:pascal.frossard@epfl.ch
mailto:fengwu@microsoft.com




Preface

This master’s thesis concludes my research on applications of sparse image representations
and related inverse problems to the joint decoding of compressed images. It was initially
motivated by the fast growing body of work around Compressed Sensing that has emerged
during the recent years and offers some surprising results. This project allowed me to deepen
my understanding of image processing and communication — a field that has caught my inter-
est because it combines the beauty and richness of images with the elegance of mathematics
to enable the multimedia applications that are undoubtedly an important aspect of the
digital era we are living in today.

The entire work presented in the following was conducted while I was with the Internet Media
Group at Microsoft Research Asia (MSRA) in Beijing. At this point I would like to thank
Dr. Feng WU for giving me the opportunity to work with his group and his advices, Dr. Chong
Luo for the enlightening discussions, Prof. Pascal FROSSARD for his encouragement and
valuable inputs from far away and Hao CuUI for helping me out in countless ways.

During my time in Beijing I could not only work under ideal conditions at a leading research
institution and among many bright people with exciting ideas, but was also emerged into
the fascinating world of Chinese culture and learned a lot about this multifaceted country
thanks to my colleagues and friends. I could never have made all these enriching experiences
at home.

On a different note, Igor CARRON’s blog Nuit Blanche [12] has helped me a lot to get quickly
acquainted with the whole field of compressed sensing and related topics.

Last but not least I would like to thank my parents and family for their continuous support
throughout the many years of my education. Vielen Dank!

Markus B. Schenkel
Beijing, February 26, 2010






Summary

Recently there has been a big and growing interest in sparse representations of signals. A
signal can always be represented as a linear combination of basis vectors because a basis is
by definition complete. If the basis is well chosen by exploiting the correlation structure of
a given class of signals, only a small number of basis vectors will be required, leading to a
sparse representation. If we further use more vectors than necessary to form an overcom-
plete dictionary, sparse representations become possible for an even larger range of signals.
This can be applied to compression, feature extraction or to regularize a number of inverse
problems. A particular body of work that is motivated by the fact that such sparse repre-
sentations exist for a wide range of signals is known as compressed sensing. It states that
the dimensionality of signals that are known to be sparse in some basis can be reduced and
that it is possible to accurately recover the original signal from the compressed data with
high probability and efficient algorithms. After an introduction to the relevant concepts, this
thesis presents two applications of this framework to image communication.

In a first part we propose a new scheme for wireless video multicast based on compressed
sensing. It has the property of graceful degradation and, unlike systems adhering to tradi-
tional separate coding, it does not suffer from a cliff effect. Compressed sensing is applied to
generate measurements of equal importance from a video such that a receiver with a better
channel will naturally have more information at hands to reconstruct the content without
penalizing others. We experimentally compare different random matrices at the encoder side
in terms of their performance for video transmission. We further investigate how properties
of natural images can be exploited to improve the reconstruction performance by transmit-
ting a small amount of side information. And we propose a way of exploiting inter-frame
correlation by extending only the decoder. Finally, we compare our results with a different
scheme targeting the same problem with simulations and find competitive results for some
channel configurations.

In a second part we address the problem of joint decoding of JPEG encoded stereo image
pairs. Stereo images typically contain a high degree of redundancy. But cameras would
have to implement proprietary encoding solutions for predictive coding, because no stan-
dard technology is available. Furthermore the limited processing power of portable cameras
encourages a distributed scheme. We propose to rather use the ubiquitous JPEG compres-
sion tools, and focus on the joint decoding problem for quality enhancement. We formulate
this as a constrained optimization problem and show how appropriate regularization leads
to more consistent results. This scheme is similar to a distributed source coding framework,
where the exploitation of the correlation at the decoder permits to save on the overall band-
width. Experiments on natural stereo images show an improvement in both visual quality
and PSNR when compared to separate decoding.
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Key to notation

Throughout this text matrices and operators are denoted with upper case, upright bold
symbols A, vectors in lowercase, bold italic a and scalars as italic a. Elements of matrices
and vectors are indexed as A; ; and ay, respectively. A hat a denotes the reconstruction result.
If not otherwise noted images are implicitly concatenated into column vectors. Because all
theory presented is going to be applied to images, only real valued signals in a discrete space
are studied. The words signal and image are often used synonym.

A superscript a(? is used for the value of a during the i*" iteration of an algorithm. For a
set T'C {1,..., N}, Ar is the reduction of A € R™*¥ to the columns indexed by T

The following table summarizes the most commonly used symbols and operations:

Symbol | Dimension | Description

N N Signal dimension in the pixel domain

M N Signal dimension in the compressed domain

D N Number of elements in a dictionary

K N Number of non-zero coefficients (Sparsity) of a signal
L N Number of blocks in an image

P RMxN Measurement matrix

v RN*D Transform matrix or dictionary

D RN XN Two-dimensional DCT transform matrix

b RN An image block of size N =n X n in column form

s RP Coeflicients of a signal representation over a dictionary
AT Pseudo inverse of A

T N Cardinality of a set I'
IR R ¢y pseudo norm
(RIS R ¢, norm for p > 1

[ N Next higher integer

[-] Z Closest integer

|- N Next lower integer







Chapter 1

Introduction

This chapter presents the relevant background information and theory related to this thesis.
We introduce sparse image coding methods and common inverse problems, followed by an
overview of the compressed sensing framework and the important algorithms.

1.1 Sparse Representations

1.1.1 Signal model

A discrete signal € RY can be written as a linear combination of a set of D vectors {;}
weighted by the corresponding coefficients {s;}. Those vectors are often referred to as atoms.
A sufficient condition on the dictionary ¥ = [11 ---4pp] € RNV*P to represent any possible
signal € RY is that it spans R"Y. Thus a complete basis with D = N is the smallest
set of vectors that satisfies this condition, but so called overcomplete dictionaries where the
number of elements exceeds the dimension of the signal space (i.e. D > N) are possible. In
general we can then decompose x as

D
T = 21#1'31- = ps. (1.1)
i=1

A sparse representation of a signal @ is one that concentrates most of its energy in only a
small number of the coefficients in s. It will therefore be based on only a small number of
atoms ;. A signal representation that involves only a small number of components and
achieves the same accuracy as one with more components, is simpler and can be considered
as a better explanation of the signal. If W is overcomplete, a unique best representation
exists only under some conditions and finding the most compact s can be a challenging task.
However, the number of components is an objective we can optimize for and, as we will see,
sufficiently good representations can be found easier than one might expect.

On a side note, it is also suggested that the efficiency of the human visual system and
the related learning processes are to a big extent based on sparsity, for instance in the
excitation of neurons [32]. All this motivates the concept of parsimony or sparsity for signal
representations and indeed it has been successfully applied to a large number of relevant
problems. For instance to image denoising [29], where thresholding in a sparse representation
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keeps only the vectors that best explain a signal but discards the noise. The concentration
in a small number of coefficients also benefits the learning in support- and relevance-vector
machines (SVM and RVM) [49].

There often arises a trade-off between efficient coding and an accurate approximation. To
quantify this more precisely we introduce the best K-term approzimation of a signal as the
representation with at most K non-zero coefficients that minimizes the error in the mean-
square sense.

1.1.2 Choice of dictionary

To some extend we can say that every interesting signal is sparse — if only we can find the
right way to define it. But how to choose a good dictionary? We first study the use of
full-rank bases followed by more general dictionaries to find good approximations of that
kind.

Adaptive bases

If we depart from a known class of signals defined by a large set of given examples, we would
like to find the basis that leads to the sparsest representation. If the class of signals in
question are natural images we could for instance take a high number of randomly selected
patches as an input.

The typical solution to this problem is the Karhunen-Loéve transform (KLT). It departs
from the assumption that the elements {a;} of the multivariate dataset A € R¥*M are
correlated and defines an orthonormal basis such that its spanning vectors are oriented in
the directions of highest variance. These directions are referred to as principal components
and the procedure is also known as principal component analysis (PCA) in the context of
machine learning. The first principal component is chosen to point in the direction of highest
variability. The second component does the same within the subspace orthogonal to the first
component and so on.

The KLT can be computed as either a singular value decomposition (SVD) of the data matrix
if available or as an eigen-decomposition of its covariance matrix if the signal model is given
by its distribution.

The SVD of a matrix A = [a;...ay] centered around the origin (i.e. >, a; = 0) is given
by
A=UxV'

such that ¥ € RV*M ig a diagonal matrix with non-negative elements, U € RV*N and
V € RMXM are orthogonal matrices. The diagonal elements of ¥ are called singular values
of A and arranged in decreasing order. The KLT is then given by

KLT{A}=T=XV'.
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If we reduce T by taking only the first K components and denote this as
yr =Tz € RE,

then the K-term approximation of a random vector x following the signal distribution is
given by the projection
T = TKyK = TKT—[I—(CC

It has minimal distortion in the mean square sense (i.e. the expectation of || — x|, is
minimal) if T is a KLT basis. The proof is based on the fact that the KLT diagonalizes the
covariance matrix of A and is provided in [29]. Hence the best K-term approximation in a
KLT basis is given by the first K terms because the components are arranged in the order
of decreasing eigenvalues.

Fixed bases

The covariance matrix of a class of signals is not always known a priori, and even if it is,
calculating the KLT is of high computational complexity. Furthermore applying the trans-
form requires the multiplication with a dense matrix. For these reasons we are sometimes
also interested in finding better and fixed transforms that come close enough to a KLT and
its optimality properties.

For image patches the discrete cosine transform (DCT) is heuristically a good approximation
of the KLT in this sense. It is further a separable transform and can be implemented in an
efficient way based on a fast Fourier transform (FFT).

Another popular family of orthonormal bases are wavelets. They have the property of well
approximating images that are dominated by piecewise regular areas and their scale based
design is well adapted to the structure of images. Furthermore they can be implemented
with fast algorithms and the geometric interpretation of the coefficients comes in handy for
an efficient coding. This has lead to successful applications in compression, notably the
practical schemes JPEG2000 and SPTHT [38].

Overcomplete dictionaries

The bases discussed so far are not invariant to geometric transformations, in particular
affine transformations such as translation or rotation. If a signal is composed by a set of
basis vectors, a shifted version of that signal for instance can not simply be represented by
shifted versions of the basis vectors because the latter are not part of the dictionary. If this
was the case, we could greatly simplify the estimation of the transform of the signals because
they could simply be represented by manipulating the coefficient indices. This has led to so
called structured dictionaries [31]. However, it is still a partially open problem how they can
be learned.

A different category of dictionaries based on overcomplete discrete cosine or wavelet trans-
forms has successfully been applied to image denoising problems [16]. Another approach is
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to combine a K-means (or Lloyd-Max) like algorithm with an SVD to adaptively learn good
dictionaries and is known as K-SVD [2].

Finally, if a signal is a superposition of multiple components where each is sparse in a different
basis, the corresponding bases can be carefully combined to build a dictionary over which
the superposition can still be sparsely represented.

1.1.3 Coherence

In the limit case, an infinite dictionary could contain all possible signals and any signal could
be represented by just a single non-zero coefficient. Because this obviously does not lead to
a practical scheme, we can expect an optimal dictionary size somewhere in between.

A definition commonly introduced to study the properties of a dictionary is the coherence
parameter p. It is defined as the cosine of the angle between the two closest atoms

p () = max (i, ;)|
i#]
of a dictionary ¥ with normalized atoms ||4);|| = 1 Vi. For an orthonormal basis p is zero.

We can describe a dictionary with a comparably small value of p as incoherent and use
this as a heuristic for sparse approximations to be easy to find. If a signal has a K-term
approximation with respect to the dictionary ¥ that satisfies

K<;<1+M(l‘1’)>,

then this representation is the unique, sparsest representation in this dictionary [10].

1.2 Inverse Problems

In a very general sense we can define an inverse problem as a problem where the effect is
known and we are asked to conclude on what caused it. Before solving such a problem we
will need to, first, model the forward process and second, parameterize the system with a
minimal set of values that completely describe its state [47].

Usually a system can be parameterized in different ways. The possible parameterizations
are equivalent if they can be related by a bijective transform. All possible and distinct sets
of parameter values will form an abstract space of their own, referred to as a manifold which
is essentially independent of the chosen parameterization. Each point on this manifold will
then define a possible state of the system. The space spanned by a parameterization is called
the model space. 1t is complemented by the data space containing the possible observations
after the forward action. These physically measurable entities can again be parameterized in
different ways and form a second manifold. Whether the model and data spaces are distinct,
overlap or even coincide greatly depends on the problem in question.

Typical examples for inverse problems in image processing are tomography, deconvolution,
denoising and inpainting.
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1.2.1 Regularization

The corresponding forward problem is often surjective (an onto mapping) and more than one
cause could have led to the same effect. In such a case we can say that multiple causes would
be consistent with the effect. This underdetermined character leads us to the definition
of the well-posedness of a problem as introduced by J. Hadamard [22]. It requires three
conditions to be met: The existence and uniqueness of a solution as well as its continuous
dependency on the data on some manifold. Only this really motivates a theory of inverse
problems of its own merit.

In many image processing problems the forward process can be modeled exactly (either with
filters or, for inpainting and quantization problems, with their loss-introducing function) or
stochastically (for denoising). A solution almost always exists for the simple reason that the
data we have at hands derives from it; be it in the form of another image or the physical
reality.

However, there are still many possible solutions and in order to find a good one we must
necessarily introduce some additional conditions to reach it in a unique and stable way.
We can either use additional knowledge (if available) or enforce a certain signal model to
get the sought after solution or one with desirable properties. This step is then called
reqularization.

A possible way of regularization introduced by A. Tikhonov is to minimize the 5 norm of
an analysis operator A. If U transforms x into the model space to y = Ux + n, then we
want to recover an & that satisfies [|[Uz — yHg < € where € depends on the level of the noise
n. A Tikhonov regularization now requires an operator A that leads to small energies for
good signals. The signal can then be estimated as the result of the convex optimization

& = arg min | Az
@ (1.2)
subject to ||[UZ — yl|3 < e.

The solution to (1.2) can be given explicitly by a linear estimator as discussed by Mallat et
al. [29].

For cases where it is easier to estimate ||Ax|| than € we can reformulate (1.2) as

& = argmin | Uz — y||3
@ (1.3)
subject to HAaEH% <.

For every e there is a corresponding « relating the two formulations, but this equivalence is
seldom a trivial one.
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1.2.2 Total Variation

As natural images originate from projections of physical objects with clear boundaries onto
the image plain, they can themselves be expected to consist of locally homogeneous regions
delimited by sharp contours. This motivates the assumption of a piecewise smooth image
model and enforcing it can be used as a regularization method for such images. The total
variation introduced here quantifies this regularity. In the following we study scalar fields
(e.g. luminance images) only, but extensions to vector valued fields are possible.

The variation of a grayscale image «x is given by the magnitude of the gradient. The discrete
gradient at a location (i, j) can for instance be given by the first order difference

Dyx); ; Tij+1 — Tij
(vw)%j — < ( z )7'7] ) — < Za]+1 4,7 >
(Dy)i Tit1j = Tij
within the image and zero outside. The variation at (4, 7) is [(Vx); ;| and hence we define
the total variation as the sum over the whole image

1
Iz lpy = 5 D_1(Va)igl- (1.4)
]

In other words, the total variation is the #; norm of the gradient of an image. Usually the
variation is the euclidean magnitude of the gradient

(V)i | = [[(Va)ill, = \/((Da:m)i,j)2 + ((Dym)i5)°

and as such rotation invariant and anisotropic. However, it can be (and often is) replaced

by the isotropic
[(Va)ij| = [|(Ve)ijll; = [(De)i

+ |(Dyx)i
instead.

One class of algorithms to solve TV minimization problems is called iterative shrinkage
and thresholding (IST). Bioucas-Dias et al. [6] propose a faster modification called two-
step IST (TwIST) and Beck et al. [5] presented the fast iterative shrinkage-thresholding
algorithm (FISTA) which reaches the optimal global convergence rate. Other algorithms
based on second order methods have a fast convergence rate but the high complexity for
each step leads to impractical run times for big problem sizes.

The drawbacks of TV regularization are a possible loss of texture information or other small
scale features (because they have a high variation), a loss of contrast and geometric distortion
as well as the “staircase” effect that is caused because piecewise constant areas are favored.
Even the fastest known TV minimization algorithms still exhibit a fairly high computational
complexity.

The toy example in Fig. 1.1 on the facing page shows an image at different levels of total
variation. We see that TV minimization preserves the edges and contours but leads to a loss
of texture and details. The problem was formulated in a Lagrangian way as

& = argmin [ — @, + A | &llpy
€T
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Original image A=0.1,TV=3676 A=0.3, TV =2828 A=1.0,TV =2037

Figure 1.1: Image Lena [45] (a) original and (b — d) with minimized total variation at different
levels.

where the parameter A\ determines the desired level of the total variation.

1.3 Algorithms

Given a dictionary ¥ and a signal & we are looking for a sparse representation s € RM that
closely approximates  ~ ¥s. In other words, we want to find a best K-term approximation
(where K = [{s;|s; # 0} is the cardinality of the support of s) with respect to the norm
|z — s,

In the case of a complete basis the solution is unique and given by the inverse of ¥. If
a fast transform exists the complexity can be further reduced to O(N log N) for the FFT
and related transforms or O(N) for wavelet transforms with compact support. As discussed
above in a KLT basis the first K terms also give the best K-term approximation.

Although decoding from a representation in an overcomplete dictionary is easily done by
applying the multiplications of (1.1), the inverse problem of finding the best representation
is a hard problem of combinatorial nature. For this reason exactly solving for the sparsest
representation can only be considered for small problem sizes. Because most image processing
problems introduce a high dimensional space, sub-optimal but efficient algorithms have been
proposed. The most notable variants are basis pursuit (BP), matching pursuit (MP) and
orthogonal matching pursuit (OMP).

In the following we assume all dictionaries to be normalized such that |¢] =1 Vk.

1.3.1 Matching pursuit

The greedy matching pursuit algorithm is a fast approach. It iteratively selects the atom that
correlates most with the signal, calculates the residue r and continues until K coefficients
are extracted or the residue reaches zero. Any remaining coefficients are left to zero.

However, this algorithm can happen to select inappropriate atoms requiring a lot of additional
vectors to correct for the wrong choice made before.
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Algorithm 1: Matching Pursuit
Data: ¥, =
Result: s
Initialization: ») =z, s =0
for 0 < i< K do
ar = (¢, 7@) VI
k = argmax; ||
P+ — () _ gpahy
Sk = ag
end

1.3.2 Orthogonal matching pursuit

A second algorithm reducing this risk is the orthogonal matching pursuit [53] which is similar
in spirit to MP, but — analog to a Gram-Schmidt process — orthogonalizes the dictionary after
each iteration. This guarantees that no components in the direction of previously selected
atoms are introduced as it can be the case with MP.

Let us introduce the set I' to accumulate the indices of selected atoms such that 7 € I' &

81750

Algorithm 2: Orthogonal Matching Pursuit
Data: ¥, x
Result: s
Initialization: I' =0, r© = ¢
for 0 <i< K do
ar= (P, 7Dy vigT®
Imax = arg max; |a|
T+ — @) U {lmax}
(i)> _ ‘I,Tm,r.(i—&-l)

D) — () _ gl
end
S = S(K)

The algorithm necessarily stops after K < N iterations with a zero residue because all
dimensions are covered at this point. It has an exponential convergence rate. The cost of
each iteration can be reduced by using a QR factorization of ¥ for the orthogonalization
step, but the complexity is still much higher than for MP.

It is worth noting that OMP does not minimize the residual error at each step. It does,
however, minimize the residual error given the selected atoms.
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1.3.3 Basis pursuit

Basis pursuit relaxes the problem by approximating the £y norm with the convex ¢; norm.
The approximation of the signal in a dictionary can then be seen as an underdetermined
inverse problem that is regularized by the ¢; norm. It involves all coefficients at once and
can be implemented as a linear program (LP). Linear programs are a category of problems
that can be put into their canonical form as

(LP) : & = argmax c'x
€T

subject to Ax <b.

We discuss the implications of this approach in more detail in the context of compressed
sensing in Sec. 1.4.3 on page 13.

Overcomplete dictionaries are inherently redundant and the related algorithms will likely
perform redundant calculations as well. A possible cure is to use a divide and conquer
strategy, for instance by using a tree-based implementation or by splitting the dictionary
into incoherent subparts to reduce the cost of the search in each iteration step. In some
cases this will improve the runtime without penalizing the approximation performance too
much.

1.4 Compressed Sensing

Compressed sensing (CS) is a method to perfectly reconstruct a signal x € RY from less
than N non-adaptive, linear projections. It relies essentially on the possibility to represent
x sparsely in a known basis ¥ € RV*N with only K < N non-zero coefficients.

1.4.1 Johnson-Lindenstrauss Embedding

We start the discussion of compressed sensing with a result concerning low distortion em-
beddings of points in a high dimensional euclidean space into a lower dimensional one.

Lemma 1 (Johnson and Lindenstrauss [26])

Given 0 < ¢ < 1 and an integer K, let M € N be M > My = O(e 2log K).
For every set P of K points in RY there exists f : RN — RM such that for all
u,v €P

(1 =6 lu—v|* < [|f(w) = f(0)]* < (1 +€) u—v|.

Thus it is possible to embed k points from an n dimensional space into an m < n dimensional
one while preserving the distance between the points up to an arbitrary constant e.
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Besides the original work, other proofs were also given by Gupta and Dasgupta [21] or Frankl
and Meahara [18]. The latter give a a constructive proof with an explicit value for

2¢3

moy = ’79(62 - ?)_1 log |73|-‘ +1
by considering a scheme with projection on random orthonormal vectors.

This result has applications in various fields where the dimensionality of the problem deter-
mines the computational complexity. Reducing the dimensionality can for instance benefit
machine learning applications. And more importantly compressed sensing can be seen as
such an embedding.

1.4.2 Measurements

As before we denote the representation of @ € RY over ¥ € RV*N a5
N
x = Z Y; 8 = Ws
i=1

where s € RY is the K-sparse coefficient vector.

Instead of directly working with the signal x, we project it onto a different space of lower
dimension M with ® € RM*N_ In this context the components of the resulting vector

y=&xr=dTs cRY
are then called measurements.

The compressed sensing theory now states that if ® and W are sufficiently incoherent (mean-
ing that the columns {t;} of ¥ can not represent sparsely the rows of ®) and if s is suffi-
ciently sparse, we can recover the signal x from its measurements y with high probability
even though the system y = ®x is highly underdetermined in terms of linear algebra.

Many pairs of bases are known to be incoherent, so for example the Fourier and Wavelet
bases [10]. In particular a basis built from i.i.d. random draws from a Gaussian or a Bernoulli
distribution will be incoherent with any other fixed basis with a high probability in high
dimensions. A basis drawn from a Gaussian distribution is in a sense universal: Because
of the rotational symmetry of the distribution no direction is favored a priori and it can be
used with any dictionary with the same high probability.

A sufficient condition linking the matrices ®, ¥ and the sparsity K is the Restricted Isometry
Property (RIP).
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Definition 1 (Restricted Isometry Property)

If for all K-sparse s € RV, there exists 0 < §x < 1 such that
2 2 2
(1—0dx)Islz < [[As]y < (1+0k) sl

we say that A satisfies the RIP of order K with radius d.

In other words, we ask that all submatrices with up to K columns of ¥ are close to isometries
and as such approximatively distance preserving.

Theorem 1 (Perfect Recovery Condition, Candeés and Tao [10])

If A satisfies the RIP of order 2K with radius dsx, then for any K-sparse signal
s sensed by y = As, s is with a high probability perfectly recovered by the ideal
program
(Po) : 8 = argmin ||s||,
8 (1.5)
subject to y = ®W¥s

and unique.

A complete proof is given ibidem. The uniqueness property can be shown by contradiction:
If s and t are two different K-sparse representations for & for which the RIP of order 2K
holds, then s — t is at most 2K -sparse and

2 2 2
(1—darc) lIs = tlly < [[As — At[l; = [ly —yl; = 0.
Only s =t can satisfy this condition and hence s is the unique K-sparse solution. ]

Although it is a hard (NP-complete) problem to exactly verify the RIP for a given matrix,
it has been shown [10] that Gaussian random matrices satisfy it with high probability if

M >cKln <g) (1.6)

is satisfied for a constant ¢ depending only on ¢ and with a high probability that exponentially
tends towards 1 as N increases.

1.4.3 Signal recovery

If the number of measurements M is chosen sufficiently big according to (1.6), then the
minimization (Pg) defined in (1.5) is shown to find the unique solution § = s [10]. Once §
is found we can project it back to get € = WS in the original domain.

However, this minimization problem is again of combinatorial nature and therefore com-
putationally impossible for all but the smallest problem sizes. In particular, applications
to images with their high number of dimensions would not be possible. But luckily above
problem (Pg) can be relaxed and reformulated as a convex optimization!
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Figure 1.2: [llustration of {5 (green), {1 (red) and £y (blue) minimization for (a) equality constraints,
(b) quadratically bounded constraints and (c¢) quadratic bounds with reweighted norms.

The constraints are shown in black and gray and the respective minimal £, balls in color.
(Inspired by [11])

Among all the ¢, norms, the one with the smallest value of p € R, which still satisfies
the triangle inequality and hence is a norm and convex, is ||-||;. Therefore it is a good
candidate to replace the |||, pseudo-norm and to restate the problem as a constrained
convex optimization problem.

Theorem 2 ({y — ¢; equivalence, Donoho and Huo [13])
If ®W satisfies the RIP of order 2K with radius dox < ﬂ2) — 1, then

(Pq1): § = argmin ||s||
s (1.7)
subject to y = ®W¥s

is equivalent to (Pg) and will find the same unique §.

This relaxed problem (P7) is again the basis pursuit and can be solved by standard opti-
mization approaches such as a linear program. It is a rather surprising result that the two
problems are exactly equivalent under some conditions and this is one of the reasons for the
popularity of compressed sensing.

We can illustrate the intuition behind the different optimization problems by visualizing a
contrived case where N = 2 and M = K = 1. Figure 1.2 shows the space of s € RY where
the black line represents the subspace of all possible s leading to a given measurement value.
However only 2 of them are 1-sparse and both ¢y and ¢; minimization will find the exact
solution in the noiseless case (a) and come close even with noise in (b) while for both cases
an /o minimization would yield completely different results. Part (¢) will be discussed in
Sec. 1.4.5 below.

In practice the minimal ratio M /K is sufficiently small (typically in the order of 2 to 4) for
applications to be possible.
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1.4.4 Compressible Signals

These findings do not only hold for exactly sparse signals, but can also be applied to compress-
ible signals where the coefficient magnitudes decay sufficiently fast, but do not necessarily
reach zero. If such a representation exists, the signal can be approximated by a best K-term
approximation using a thresholded coefficient vector. In particular if the sorted magnitudes
|s|(i) of the coefficients closely follow a power-law such that

sl <Ci™® (1.8)
for some constants C' and « we can relax [10] above problem (P;) to solve
(Pac): = argmin 5],
subject to ||y — ®¥s||, <€

instead.

This formulation can also be used if the measurements are affected by noise e such that
9y = y + e. In which case (Pqc) is called basis pursuit denoising (BPDN). The relaxation
parameter € needs to be chosen carefully. Let us assume that the noise is Gaussian with
e; ~ N(0,0?) ii.d. and that we know its variance o2. Then, even if we knew the perfect
& = x by oracle, we had an error of at least ¢y = ||®Z — y||, = ||e||, with an expected value
of E(eg) = VME(e;) = V/Mo. Thus a practical € needs to be chosen bigger and a value

proposed by Candes [9] is
e=oVM\/1+2/2/M > €. (1.10)

Robust recovery for compressed sensing is therefore still possible with noise as we have to
expect it in any practical application.

This is the reconstruction method we will use in the following (See Sec. 2.2.2 on page 22).

1.4.5 Extensions

Additional constraints

CS decoding can be combined with additional constraints beyond sparsity. In some cases
the positivity of the coefficients can be enforced, the scale structure of wavelets can be
exploited or the total variation can be taken into account. Of particular interest is the effect
of quantization on CS. Basis pursuit dequantization [24] and optimal quantizer design for
CS have been studied before [46].

Reweighting

First, we show how previous knowledge about the distribution of the image coefficients in
the transform domain can improve the performance. The intuition behind this approach
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is, that if we knew the perfect solution & by oracle, we could define the diagonal weighting
matrix A as

Y s+
such that the reweighted ¢; norm
s:
(sl = 3 (s = 30— \ ~ | {sifsi # 0} = sl -
, |si] +

A %

would actually approximates the £y norm. Above, the parameter 0 < v < 1 serves for
regularization of s; close or equal to zero. The reweighted ¢; minimization then becomes

(Prw) : § = argmin || As||,
s (1.11)
subject to || — ®W¥s||, <€

By introducing ¢ = As we can equivalently write
g = argmin [|ql|;
q
subject to ||g — ®WA 'q||, <¢, §=A"'g

and reuse existing optimization algorithms without change [11]. This choice actually leads
us to a norm similar to the Mahalanobis distance but for the ¢; case.

Candes et al. [11] suggest using this approach iteratively to outperform unweighted ¢; min-
imization even in the case of not exactly sparse signals as long as the exponent « in (1.8)
remains below 1.

Part (c) of Fig. 1.2 on page 14 motivates the reweighting in cases where an estimate for
s; is known. There, the reweighted ¢, balls are drawn and we can see that in such cases
the correct solution can be recovered that would otherwise be decoded incorrectly. It also
implies that we do not need to have a very precise value of the scaling factors in order make
use of this technique.

Joint sparsity

Joint Sparsity Models (JSM) are motivated by the fact that both the location and the values
of the non-zero values in a sparse vector are unknowns. Hence if we already knew the
support of a sparse signal we could drastically reduce the number of measurements required
to decode it, because only the non-zero values would remain as unknowns. One way to
reduce this number of unknowns is by assuming that the support of two or more subsequent
signals is related.

For a sequence of subsequent signals {z;}; Baron et al. introduce three such models [4]:
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o JSM-1: Common sparse component plus innovations: Each signal x; is represented as
the sum of a common component ¢ and an innovation component Ax; such that all
of them have a sparse representation

xc=W¥sc, |sclly=Kc

and
Az; = WAs;, [Asll, = K

respectively.

e JSM-2: Common sparse supports: In this case all signals have different coefficients,
but the support for all s; is identical.

e JSM-3: Non-sparse common component plus sparse innovations: The last model is
similar to the first one, but does not make any assumption on the sparsity of the
common component that is equally superimposed on all signals.

The assumptions of JSM-1 can be exploited by solving a single linear program on

g=oTs
for all signals at once by defining
§:(SC7817”'78L)T7 g:(ylu"'ny)T
&= (x1, - ,x1) = (wc+ Awy, - e + Axp)'
d, v v
S = , U=| o
35 v v

Recovery strategies, in particular a simultaneous orthogonal matching pursuit, for the other
two cases are given in [15].

Practical algorithms

Different algorithms to solve the compressed sensing problem have been proposed and are
publicly available. Starting with ¢;-magic [9] that implements some of the most common
problems as either linear or second order cone programs with a rather slow path-following
primal-dual method, over gradient projection for sparse reconstruction (GPSR) [17] to the
fast Nesterov’s Optimal Gradient Method implemented in NESTA [8]. The latter smooths
the 1 norm and iteratively reduces this barrier until convergence.

Because the product ®W itself can be seen as an overcomplete dictionary for the me