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Summary

Recently there has been a big and growing interest in sparse representations of signals. A

signal can always be represented as a linear combination of basis vectors because a basis is

by definition complete. If the basis is well chosen by exploiting the correlation structure of

a given class of signals, only a small number of basis vectors will be required, leading to a

sparse representation. If we further use more vectors than necessary to form an overcom-

plete dictionary, sparse representations become possible for an even larger range of signals.

This can be applied to compression, feature extraction or to regularize a number of inverse

problems. A particular body of work that is motivated by the fact that such sparse repre-

sentations exist for a wide range of signals is known as compressed sensing. It states that

the dimensionality of signals that are known to be sparse in some basis can be reduced and

that it is possible to accurately recover the original signal from the compressed data with

high probability and efficient algorithms. After an introduction to the relevant concepts, this

thesis presents two applications of this framework to image communication.

In a first part we propose a new scheme for wireless video multicast based on compressed

sensing. It has the property of graceful degradation and, unlike systems adhering to tradi-

tional separate coding, it does not suffer from a cliff effect. Compressed sensing is applied to

generate measurements of equal importance from a video such that a receiver with a better

channel will naturally have more information at hands to reconstruct the content without

penalizing others. We experimentally compare different random matrices at the encoder side

in terms of their performance for video transmission. We further investigate how properties

of natural images can be exploited to improve the reconstruction performance by transmit-

ting a small amount of side information. And we propose a way of exploiting inter-frame

correlation by extending only the decoder. Finally, we compare our results with a different

scheme targeting the same problem with simulations and find competitive results for some

channel configurations.

In a second part we address the problem of joint decoding of JPEG encoded stereo image

pairs. Stereo images typically contain a high degree of redundancy. But cameras would

have to implement proprietary encoding solutions for predictive coding, because no stan-

dard technology is available. Furthermore the limited processing power of portable cameras

encourages a distributed scheme. We propose to rather use the ubiquitous JPEG compres-

sion tools, and focus on the joint decoding problem for quality enhancement. We formulate

this as a constrained optimization problem and show how appropriate regularization leads

to more consistent results. This scheme is similar to a distributed source coding framework,

where the exploitation of the correlation at the decoder permits to save on the overall band-

width. Experiments on natural stereo images show an improvement in both visual quality

and PSNR when compared to separate decoding.
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Key to notation

Throughout this text matrices and operators are denoted with upper case, upright bold

symbols A, vectors in lowercase, bold italic a and scalars as italic a. Elements of matrices

and vectors are indexed as Ai,j and ak respectively. A hat â denotes the reconstruction result.

If not otherwise noted images are implicitly concatenated into column vectors. Because all

theory presented is going to be applied to images, only real valued signals in a discrete space

are studied. The words signal and image are often used synonym.

A superscript a(i) is used for the value of a during the ith iteration of an algorithm. For a

set Γ ⊆ {1, . . . , N}, AΓ is the reduction of A ∈ RM×N to the columns indexed by Γ.

The following table summarizes the most commonly used symbols and operations:

Symbol Dimension Description

N N Signal dimension in the pixel domain

M N Signal dimension in the compressed domain

D N Number of elements in a dictionary

K N Number of non-zero coefficients (Sparsity) of a signal

L N Number of blocks in an image

Φ RM×N Measurement matrix

Ψ RN×D Transform matrix or dictionary

D RN×N Two-dimensional DCT transform matrix

b RN An image block of size N = n× n in column form

s RD Coefficients of a signal representation over a dictionary

A† Pseudo inverse of A

|Γ| N Cardinality of a set Γ

‖·‖0 R `0 pseudo norm

‖·‖p R `p norm for p ≥ 1

d·e N Next higher integer

[ · ] Z Closest integer

b·c N Next lower integer

1





Chapter 1

Introduction

This chapter presents the relevant background information and theory related to this thesis.

We introduce sparse image coding methods and common inverse problems, followed by an

overview of the compressed sensing framework and the important algorithms.

1.1 Sparse Representations

1.1.1 Signal model

A discrete signal x ∈ RN can be written as a linear combination of a set of D vectors {ψi}
weighted by the corresponding coefficients {si}. Those vectors are often referred to as atoms.

A sufficient condition on the dictionary Ψ = [ψ1 · · ·ψD] ∈ RN×D to represent any possible

signal x ∈ RN is that it spans RN . Thus a complete basis with D = N is the smallest

set of vectors that satisfies this condition, but so called overcomplete dictionaries where the

number of elements exceeds the dimension of the signal space (i.e. D > N) are possible. In

general we can then decompose x as

x =
D∑
i=1

ψisi = ψs. (1.1)

A sparse representation of a signal x is one that concentrates most of its energy in only a

small number of the coefficients in s. It will therefore be based on only a small number of

atoms ψi. A signal representation that involves only a small number of components and

achieves the same accuracy as one with more components, is simpler and can be considered

as a better explanation of the signal. If Ψ is overcomplete, a unique best representation

exists only under some conditions and finding the most compact s can be a challenging task.

However, the number of components is an objective we can optimize for and, as we will see,

sufficiently good representations can be found easier than one might expect.

On a side note, it is also suggested that the efficiency of the human visual system and

the related learning processes are to a big extent based on sparsity, for instance in the

excitation of neurons [32]. All this motivates the concept of parsimony or sparsity for signal

representations and indeed it has been successfully applied to a large number of relevant

problems. For instance to image denoising [29], where thresholding in a sparse representation

3



4 Chapter 1 Introduction

keeps only the vectors that best explain a signal but discards the noise. The concentration

in a small number of coefficients also benefits the learning in support- and relevance-vector

machines (SVM and RVM) [49].

There often arises a trade-off between efficient coding and an accurate approximation. To

quantify this more precisely we introduce the best K-term approximation of a signal as the

representation with at most K non-zero coefficients that minimizes the error in the mean-

square sense.

1.1.2 Choice of dictionary

To some extend we can say that every interesting signal is sparse – if only we can find the

right way to define it. But how to choose a good dictionary? We first study the use of

full-rank bases followed by more general dictionaries to find good approximations of that

kind.

Adaptive bases

If we depart from a known class of signals defined by a large set of given examples, we would

like to find the basis that leads to the sparsest representation. If the class of signals in

question are natural images we could for instance take a high number of randomly selected

patches as an input.

The typical solution to this problem is the Karhunen-Loève transform (KLT). It departs

from the assumption that the elements {ai} of the multivariate dataset A ∈ RN×M are

correlated and defines an orthonormal basis such that its spanning vectors are oriented in

the directions of highest variance. These directions are referred to as principal components

and the procedure is also known as principal component analysis (PCA) in the context of

machine learning. The first principal component is chosen to point in the direction of highest

variability. The second component does the same within the subspace orthogonal to the first

component and so on.

The KLT can be computed as either a singular value decomposition (SVD) of the data matrix

if available or as an eigen-decomposition of its covariance matrix if the signal model is given

by its distribution.

The SVD of a matrix A = [a1 . . .aN ] centered around the origin (i.e.
∑

i ai = 0) is given

by

A = UΣVT

such that Σ ∈ RN×M is a diagonal matrix with non-negative elements, U ∈ RN×N and

V ∈ RM×M are orthogonal matrices. The diagonal elements of Σ are called singular values

of A and arranged in decreasing order. The KLT is then given by

KLT{A} = T = ΣVT.
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If we reduce T by taking only the first K components and denote this as

yK = TT
K x ∈ RK ,

then the K-term approximation of a random vector x following the signal distribution is

given by the projection

x̂ = TK yK = TKTT
K x

It has minimal distortion in the mean square sense (i.e. the expectation of ‖x̂− x‖2 is

minimal) if T is a KLT basis. The proof is based on the fact that the KLT diagonalizes the

covariance matrix of A and is provided in [29]. Hence the best K-term approximation in a

KLT basis is given by the first K terms because the components are arranged in the order

of decreasing eigenvalues.

Fixed bases

The covariance matrix of a class of signals is not always known a priori, and even if it is,

calculating the KLT is of high computational complexity. Furthermore applying the trans-

form requires the multiplication with a dense matrix. For these reasons we are sometimes

also interested in finding better and fixed transforms that come close enough to a KLT and

its optimality properties.

For image patches the discrete cosine transform (DCT) is heuristically a good approximation

of the KLT in this sense. It is further a separable transform and can be implemented in an

efficient way based on a fast Fourier transform (FFT).

Another popular family of orthonormal bases are wavelets. They have the property of well

approximating images that are dominated by piecewise regular areas and their scale based

design is well adapted to the structure of images. Furthermore they can be implemented

with fast algorithms and the geometric interpretation of the coefficients comes in handy for

an efficient coding. This has lead to successful applications in compression, notably the

practical schemes JPEG2000 and SPIHT [38].

Overcomplete dictionaries

The bases discussed so far are not invariant to geometric transformations, in particular

affine transformations such as translation or rotation. If a signal is composed by a set of

basis vectors, a shifted version of that signal for instance can not simply be represented by

shifted versions of the basis vectors because the latter are not part of the dictionary. If this

was the case, we could greatly simplify the estimation of the transform of the signals because

they could simply be represented by manipulating the coefficient indices. This has led to so

called structured dictionaries [31]. However, it is still a partially open problem how they can

be learned.

A different category of dictionaries based on overcomplete discrete cosine or wavelet trans-

forms has successfully been applied to image denoising problems [16]. Another approach is
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to combine a K-means (or Lloyd-Max) like algorithm with an SVD to adaptively learn good

dictionaries and is known as K-SVD [2].

Finally, if a signal is a superposition of multiple components where each is sparse in a different

basis, the corresponding bases can be carefully combined to build a dictionary over which

the superposition can still be sparsely represented.

1.1.3 Coherence

In the limit case, an infinite dictionary could contain all possible signals and any signal could

be represented by just a single non-zero coefficient. Because this obviously does not lead to

a practical scheme, we can expect an optimal dictionary size somewhere in between.

A definition commonly introduced to study the properties of a dictionary is the coherence

parameter µ. It is defined as the cosine of the angle between the two closest atoms

µ(Ψ) = max
i 6=j
|〈ψi,ψj〉|

of a dictionary Ψ with normalized atoms ‖ψi‖ = 1 ∀i. For an orthonormal basis µ is zero.

We can describe a dictionary with a comparably small value of µ as incoherent and use

this as a heuristic for sparse approximations to be easy to find. If a signal has a K-term

approximation with respect to the dictionary Ψ that satisfies

K <
1

2

(
1 +

1

µ(Ψ)

)
,

then this representation is the unique, sparsest representation in this dictionary [10].

1.2 Inverse Problems

In a very general sense we can define an inverse problem as a problem where the effect is

known and we are asked to conclude on what caused it. Before solving such a problem we

will need to, first, model the forward process and second, parameterize the system with a

minimal set of values that completely describe its state [47].

Usually a system can be parameterized in different ways. The possible parameterizations

are equivalent if they can be related by a bijective transform. All possible and distinct sets

of parameter values will form an abstract space of their own, referred to as a manifold which

is essentially independent of the chosen parameterization. Each point on this manifold will

then define a possible state of the system. The space spanned by a parameterization is called

the model space. It is complemented by the data space containing the possible observations

after the forward action. These physically measurable entities can again be parameterized in

different ways and form a second manifold. Whether the model and data spaces are distinct,

overlap or even coincide greatly depends on the problem in question.

Typical examples for inverse problems in image processing are tomography, deconvolution,

denoising and inpainting.
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1.2.1 Regularization

The corresponding forward problem is often surjective (an onto mapping) and more than one

cause could have led to the same effect. In such a case we can say that multiple causes would

be consistent with the effect. This underdetermined character leads us to the definition

of the well-posedness of a problem as introduced by J. Hadamard [22]. It requires three

conditions to be met: The existence and uniqueness of a solution as well as its continuous

dependency on the data on some manifold. Only this really motivates a theory of inverse

problems of its own merit.

In many image processing problems the forward process can be modeled exactly (either with

filters or, for inpainting and quantization problems, with their loss-introducing function) or

stochastically (for denoising). A solution almost always exists for the simple reason that the

data we have at hands derives from it; be it in the form of another image or the physical

reality.

However, there are still many possible solutions and in order to find a good one we must

necessarily introduce some additional conditions to reach it in a unique and stable way.

We can either use additional knowledge (if available) or enforce a certain signal model to

get the sought after solution or one with desirable properties. This step is then called

regularization.

A possible way of regularization introduced by A. Tikhonov is to minimize the `2 norm of

an analysis operator A. If U transforms x into the model space to y = Ux + n, then we

want to recover an x̂ that satisfies ‖Ux̂− y‖22 ≤ ε where ε depends on the level of the noise

n. A Tikhonov regularization now requires an operator A that leads to small energies for

good signals. The signal can then be estimated as the result of the convex optimization

x̂ = arg min
x̂

‖Ax̂‖22

subject to ‖Ux̂− y‖22 ≤ ε.
(1.2)

The solution to (1.2) can be given explicitly by a linear estimator as discussed by Mallat et

al. [29].

For cases where it is easier to estimate ‖Ax‖ than ε we can reformulate (1.2) as

x̂ = arg min
x̂

‖Ux̂− y‖22

subject to ‖Ax̂‖22 ≤ γ.
(1.3)

For every ε there is a corresponding γ relating the two formulations, but this equivalence is

seldom a trivial one.
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1.2.2 Total Variation

As natural images originate from projections of physical objects with clear boundaries onto

the image plain, they can themselves be expected to consist of locally homogeneous regions

delimited by sharp contours. This motivates the assumption of a piecewise smooth image

model and enforcing it can be used as a regularization method for such images. The total

variation introduced here quantifies this regularity. In the following we study scalar fields

(e.g. luminance images) only, but extensions to vector valued fields are possible.

The variation of a grayscale image x is given by the magnitude of the gradient. The discrete

gradient at a location (i, j) can for instance be given by the first order difference

(∇x)i, j =

(
(Dxx)i,j
(Dyx)i,j

)
=

(
xi,j+1 − xi,j
xi+1,j − xi,j

)
within the image and zero outside. The variation at (i, j) is |(∇x)i,j | and hence we define

the total variation as the sum over the whole image

‖x‖TV =
1

N

∑
i,j

|(∇x)i,j | . (1.4)

In other words, the total variation is the `1 norm of the gradient of an image. Usually the

variation is the euclidean magnitude of the gradient

|(∇x)i,j | = ‖(∇x)i,j‖2 =

√
((Dxx)i,j)

2 + ((Dyx)i,j)
2

and as such rotation invariant and anisotropic. However, it can be (and often is) replaced

by the isotropic

|(∇x)i,j | = ‖(∇x)i,j‖1 = |(Dxx)i,j |+ |(Dyx)i,j |

instead.

One class of algorithms to solve TV minimization problems is called iterative shrinkage

and thresholding (IST). Bioucas-Dias et al. [6] propose a faster modification called two-

step IST (TwIST) and Beck et al. [5] presented the fast iterative shrinkage-thresholding

algorithm (FISTA) which reaches the optimal global convergence rate. Other algorithms

based on second order methods have a fast convergence rate but the high complexity for

each step leads to impractical run times for big problem sizes.

The drawbacks of TV regularization are a possible loss of texture information or other small

scale features (because they have a high variation), a loss of contrast and geometric distortion

as well as the “staircase” effect that is caused because piecewise constant areas are favored.

Even the fastest known TV minimization algorithms still exhibit a fairly high computational

complexity.

The toy example in Fig. 1.1 on the facing page shows an image at different levels of total

variation. We see that TV minimization preserves the edges and contours but leads to a loss

of texture and details. The problem was formulated in a Lagrangian way as

x̂ = arg min
x̂

‖x̂− x‖2 + λ ‖x̂‖TV
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Original image λ = 0.1, TV = 3676 λ = 0.3, TV = 2828 λ = 1.0, TV = 2037

Figure 1.1: Image Lena [45] (a) original and (b – d) with minimized total variation at different

levels.

where the parameter λ determines the desired level of the total variation.

1.3 Algorithms

Given a dictionary Ψ and a signal x we are looking for a sparse representation s ∈ RM that

closely approximates x ≈ Ψs. In other words, we want to find a best K-term approximation

(where K = |{si|si 6= 0}| is the cardinality of the support of s) with respect to the norm

‖x−Ψs‖2.

In the case of a complete basis the solution is unique and given by the inverse of Ψ. If

a fast transform exists the complexity can be further reduced to O(N logN) for the FFT

and related transforms or O(N) for wavelet transforms with compact support. As discussed

above in a KLT basis the first K terms also give the best K-term approximation.

Although decoding from a representation in an overcomplete dictionary is easily done by

applying the multiplications of (1.1), the inverse problem of finding the best representation

is a hard problem of combinatorial nature. For this reason exactly solving for the sparsest

representation can only be considered for small problem sizes. Because most image processing

problems introduce a high dimensional space, sub-optimal but efficient algorithms have been

proposed. The most notable variants are basis pursuit (BP), matching pursuit (MP) and

orthogonal matching pursuit (OMP).

In the following we assume all dictionaries to be normalized such that ‖ψk‖ = 1 ∀ k.

1.3.1 Matching pursuit

The greedy matching pursuit algorithm is a fast approach. It iteratively selects the atom that

correlates most with the signal, calculates the residue r and continues until K coefficients

are extracted or the residue reaches zero. Any remaining coefficients are left to zero.

However, this algorithm can happen to select inappropriate atoms requiring a lot of additional

vectors to correct for the wrong choice made before.
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Algorithm 1: Matching Pursuit

Data: Ψ, x

Result: s

Initialization: r(1) = x, s = 0

for 0 < i ≤ K do

al =
〈
ψl, r

(i)
〉
∀ l

k = arg maxl |al|
r(i+1) = r(i) − akψk
sk = ak

end

1.3.2 Orthogonal matching pursuit

A second algorithm reducing this risk is the orthogonal matching pursuit [53] which is similar

in spirit to MP, but – analog to a Gram-Schmidt process – orthogonalizes the dictionary after

each iteration. This guarantees that no components in the direction of previously selected

atoms are introduced as it can be the case with MP.

Let us introduce the set Γ to accumulate the indices of selected atoms such that i ∈ Γ ⇔
si 6= 0.

Algorithm 2: Orthogonal Matching Pursuit

Data: Ψ, x

Result: s

Initialization: Γ = ∅, r(0) = x

for 0 ≤ i < K do

al =
〈
ψl, r

(i)
〉
∀ l /∈ Γ(i)

lmax = arg maxl |al|
Γ(i+1) = Γ(i) ∪ {lmax}
s

(i)

Γ(i) = Ψ†
Γ(i)r

(i+1)

r(i+1) = r(i) −Ψs(i)

end

s = s(K)

The algorithm necessarily stops after K ≤ N iterations with a zero residue because all

dimensions are covered at this point. It has an exponential convergence rate. The cost of

each iteration can be reduced by using a QR factorization of Ψ for the orthogonalization

step, but the complexity is still much higher than for MP.

It is worth noting that OMP does not minimize the residual error at each step. It does,

however, minimize the residual error given the selected atoms.
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1.3.3 Basis pursuit

Basis pursuit relaxes the problem by approximating the `0 norm with the convex `1 norm.

The approximation of the signal in a dictionary can then be seen as an underdetermined

inverse problem that is regularized by the `1 norm. It involves all coefficients at once and

can be implemented as a linear program (LP). Linear programs are a category of problems

that can be put into their canonical form as

(LP) : x̂ = arg max
x

cTx

subject to Ax � b.

We discuss the implications of this approach in more detail in the context of compressed

sensing in Sec. 1.4.3 on page 13.

Overcomplete dictionaries are inherently redundant and the related algorithms will likely

perform redundant calculations as well. A possible cure is to use a divide and conquer

strategy, for instance by using a tree-based implementation or by splitting the dictionary

into incoherent subparts to reduce the cost of the search in each iteration step. In some

cases this will improve the runtime without penalizing the approximation performance too

much.

1.4 Compressed Sensing

Compressed sensing (CS) is a method to perfectly reconstruct a signal x ∈ RN from less

than N non-adaptive, linear projections. It relies essentially on the possibility to represent

x sparsely in a known basis Ψ ∈ RN×N with only K � N non-zero coefficients.

1.4.1 Johnson-Lindenstrauss Embedding

We start the discussion of compressed sensing with a result concerning low distortion em-

beddings of points in a high dimensional euclidean space into a lower dimensional one.

Lemma 1 (Johnson and Lindenstrauss [26])

Given 0 < ε < 1 and an integer K, let M ∈ N be M ≥ M0 = O(ε−2 logK).

For every set P of K points in RN there exists f : RN → RM such that for all

u,v ∈ P

(1− ε) ‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε) ‖u− v‖2 .

Thus it is possible to embed k points from an n dimensional space into an m ≤ n dimensional

one while preserving the distance between the points up to an arbitrary constant ε.
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Besides the original work, other proofs were also given by Gupta and Dasgupta [21] or Frankl

and Meahara [18]. The latter give a a constructive proof with an explicit value for

m0 =

⌈
9(ε2 − 2ε3

3
)−1 log |P|

⌉
+ 1

by considering a scheme with projection on random orthonormal vectors.

This result has applications in various fields where the dimensionality of the problem deter-

mines the computational complexity. Reducing the dimensionality can for instance benefit

machine learning applications. And more importantly compressed sensing can be seen as

such an embedding.

1.4.2 Measurements

As before we denote the representation of x ∈ RN over Ψ ∈ RN×N as

x =

N∑
i=1

ψi si = Ψs

where s ∈ RN is the K-sparse coefficient vector.

Instead of directly working with the signal x, we project it onto a different space of lower

dimension M with Φ ∈ RM×N . In this context the components of the resulting vector

y = Φx = ΦΨs ∈ RM

are then called measurements.

The compressed sensing theory now states that if Φ and Ψ are sufficiently incoherent (mean-

ing that the columns {ψi} of Ψ can not represent sparsely the rows of Φ) and if s is suffi-

ciently sparse, we can recover the signal x from its measurements y with high probability

even though the system y = Φx is highly underdetermined in terms of linear algebra.

Many pairs of bases are known to be incoherent, so for example the Fourier and Wavelet

bases [10]. In particular a basis built from i.i.d. random draws from a Gaussian or a Bernoulli

distribution will be incoherent with any other fixed basis with a high probability in high

dimensions. A basis drawn from a Gaussian distribution is in a sense universal: Because

of the rotational symmetry of the distribution no direction is favored a priori and it can be

used with any dictionary with the same high probability.

A sufficient condition linking the matrices Φ,Ψ and the sparsity K is the Restricted Isometry

Property (RIP).
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Definition 1 (Restricted Isometry Property)

If for all K-sparse s ∈ RN , there exists 0 ≤ δK < 1 such that

(1− δK) ‖s‖22 ≤ ‖As‖
2
2 ≤ (1 + δK) ‖s‖22

we say that A satisfies the RIP of order K with radius δK .

In other words, we ask that all submatrices with up to K columns of Ψ are close to isometries

and as such approximatively distance preserving.

Theorem 1 (Perfect Recovery Condition, Candès and Tao [10])

If A satisfies the RIP of order 2K with radius δ2K , then for any K-sparse signal

s sensed by y = As, s is with a high probability perfectly recovered by the ideal

program
(P0) : ŝ = arg min

s
‖s‖0

subject to ŷ = ΦΨs
(1.5)

and unique.

A complete proof is given ibidem. The uniqueness property can be shown by contradiction:

If s and t are two different K-sparse representations for x for which the RIP of order 2K

holds, then s− t is at most 2K-sparse and

(1− δ2K) ‖s− t‖22 ≤ ‖As−At‖22 = ‖y − y‖22 = 0.

Only s = t can satisfy this condition and hence s is the unique K-sparse solution. �

Although it is a hard (NP-complete) problem to exactly verify the RIP for a given matrix,

it has been shown [10] that Gaussian random matrices satisfy it with high probability if

M ≥ cK ln

(
N

K

)
(1.6)

is satisfied for a constant c depending only on δ and with a high probability that exponentially

tends towards 1 as N increases.

1.4.3 Signal recovery

If the number of measurements M is chosen sufficiently big according to (1.6), then the

minimization (P0) defined in (1.5) is shown to find the unique solution ŝ = s [10]. Once ŝ

is found we can project it back to get x̂ = Ψŝ in the original domain.

However, this minimization problem is again of combinatorial nature and therefore com-

putationally impossible for all but the smallest problem sizes. In particular, applications

to images with their high number of dimensions would not be possible. But luckily above

problem (P0) can be relaxed and reformulated as a convex optimization!
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s1

s2

(a)

‖·‖2
‖·‖1

‖·‖0

y = ΦΨs

s1

s2

(b)

‖·‖2

‖·‖1 ‖·‖0

|y −ΦΨs| < ε

s1

s2

(c)

‖Λ · ‖2‖Λ · ‖1

‖Λ · ‖0

|y −ΦΨs| < ε

Figure 1.2: Illustration of `2 (green), `1 (red) and `0 (blue) minimization for (a) equality constraints,

(b) quadratically bounded constraints and (c) quadratic bounds with reweighted norms.

The constraints are shown in black and gray and the respective minimal `p balls in color.

(Inspired by [11])

Among all the `p norms, the one with the smallest value of p ∈ R, which still satisfies

the triangle inequality and hence is a norm and convex, is ‖·‖1. Therefore it is a good

candidate to replace the ‖·‖0 pseudo-norm and to restate the problem as a constrained

convex optimization problem.

Theorem 2 (`0 – `1 equivalence, Donoho and Huo [13])

If ΦΨ satisfies the RIP of order 2K with radius δ2K <
√

(2)− 1, then

(P1) : ŝ = arg min
s
‖s‖1

subject to ŷ = ΦΨs
(1.7)

is equivalent to (P0) and will find the same unique ŝ.

This relaxed problem (P1) is again the basis pursuit and can be solved by standard opti-

mization approaches such as a linear program. It is a rather surprising result that the two

problems are exactly equivalent under some conditions and this is one of the reasons for the

popularity of compressed sensing.

We can illustrate the intuition behind the different optimization problems by visualizing a

contrived case where N = 2 and M = K = 1. Figure 1.2 shows the space of s ∈ RN where

the black line represents the subspace of all possible s leading to a given measurement value.

However only 2 of them are 1-sparse and both `0 and `1 minimization will find the exact

solution in the noiseless case (a) and come close even with noise in (b) while for both cases

an `2 minimization would yield completely different results. Part (c) will be discussed in

Sec. 1.4.5 below.

In practice the minimal ratio M/K is sufficiently small (typically in the order of 2 to 4) for

applications to be possible.
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1.4.4 Compressible Signals

These findings do not only hold for exactly sparse signals, but can also be applied to compress-

ible signals where the coefficient magnitudes decay sufficiently fast, but do not necessarily

reach zero. If such a representation exists, the signal can be approximated by a best K-term

approximation using a thresholded coefficient vector. In particular if the sorted magnitudes

|s|(i) of the coefficients closely follow a power-law such that

|s|(i) < C i−α (1.8)

for some constants C and α we can relax [10] above problem (P1) to solve

(PQC) : ŝ = arg min
s
‖s‖1

subject to ‖ŷ −ΦΨs‖2 < ε
(1.9)

instead.

This formulation can also be used if the measurements are affected by noise e such that

ŷ = y + e. In which case (PQC) is called basis pursuit denoising (BPDN). The relaxation

parameter ε needs to be chosen carefully. Let us assume that the noise is Gaussian with

ei ∼ N (0, σ2) i.i.d. and that we know its variance σ2. Then, even if we knew the perfect

x̂ = x by oracle, we had an error of at least ε0 = ‖Φx̂− ŷ‖2 = ‖e‖2 with an expected value

of E(ε0) =
√
ME(ei) =

√
Mσ. Thus a practical ε needs to be chosen bigger and a value

proposed by Candès [9] is

ε = σ
√
M

√
1 + 2

√
2/M ≥ ε0 . (1.10)

Robust recovery for compressed sensing is therefore still possible with noise as we have to

expect it in any practical application.

This is the reconstruction method we will use in the following (See Sec. 2.2.2 on page 22).

1.4.5 Extensions

Additional constraints

CS decoding can be combined with additional constraints beyond sparsity. In some cases

the positivity of the coefficients can be enforced, the scale structure of wavelets can be

exploited or the total variation can be taken into account. Of particular interest is the effect

of quantization on CS. Basis pursuit dequantization [24] and optimal quantizer design for

CS have been studied before [46].

Reweighting

First, we show how previous knowledge about the distribution of the image coefficients in

the transform domain can improve the performance. The intuition behind this approach
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is, that if we knew the perfect solution x by oracle, we could define the diagonal weighting

matrix Λ as

Λii =
1

|si|+ γ

such that the reweighted `1 norm

‖Λs‖1 =
∑
i

|Λiisi| =
∑
i

∣∣∣∣ si
|si|+ γ

∣∣∣∣ ≈ ∣∣{si∣∣si 6= 0
}∣∣ = ‖s‖0 .

would actually approximates the `0 norm. Above, the parameter 0 < γ � 1 serves for

regularization of si close or equal to zero. The reweighted `1 minimization then becomes

(PRW) : ŝ = arg min
s
‖Λs‖1

subject to ‖ŷ −ΦΨs‖2 < ε
(1.11)

By introducing q = Λs we can equivalently write

q̂ = arg min
q

‖q‖1

subject to
∥∥ŷ −ΦΨΛ−1q

∥∥
2
< ε, ŝ = Λ−1q̂

and reuse existing optimization algorithms without change [11]. This choice actually leads

us to a norm similar to the Mahalanobis distance but for the `1 case.

Candès et al. [11] suggest using this approach iteratively to outperform unweighted `1 min-

imization even in the case of not exactly sparse signals as long as the exponent α in (1.8)

remains below 1.

Part (c) of Fig. 1.2 on page 14 motivates the reweighting in cases where an estimate for

si is known. There, the reweighted `p balls are drawn and we can see that in such cases

the correct solution can be recovered that would otherwise be decoded incorrectly. It also

implies that we do not need to have a very precise value of the scaling factors in order make

use of this technique.

Joint sparsity

Joint Sparsity Models (JSM) are motivated by the fact that both the location and the values

of the non-zero values in a sparse vector are unknowns. Hence if we already knew the

support of a sparse signal we could drastically reduce the number of measurements required

to decode it, because only the non-zero values would remain as unknowns. One way to

reduce this number of unknowns is by assuming that the support of two or more subsequent

signals is related.

For a sequence of subsequent signals {xj}j Baron et al. introduce three such models [4]:



1.4 Compressed Sensing 17

• JSM-1: Common sparse component plus innovations: Each signal xj is represented as

the sum of a common component xC and an innovation component ∆xj such that all

of them have a sparse representation

xC = ΨsC , ‖sC‖0 = KC

and

∆xj = Ψ∆sj , ‖∆sj‖0 = Kj

respectively.

• JSM-2: Common sparse supports: In this case all signals have different coefficients,

but the support for all sj is identical.

• JSM-3: Non-sparse common component plus sparse innovations: The last model is

similar to the first one, but does not make any assumption on the sparsity of the

common component that is equally superimposed on all signals.

The assumptions of JSM-1 can be exploited by solving a single linear program on

ỹ = Φ̃Ψ̃s̃

for all signals at once by defining

s̃ = (sC , s1, · · · , sL)T , ỹ = (y1, · · · ,yL)T

x̃ = (x1, · · · ,xL)T = (xC + ∆x1, · · · ,xC + ∆xL)T

Φ̃ =

 Φ1

. . .

ΦL

 , Ψ̃ =


Ψ Ψ

Ψ
. . .

Ψ Ψ


Recovery strategies, in particular a simultaneous orthogonal matching pursuit, for the other

two cases are given in [15].

Practical algorithms

Different algorithms to solve the compressed sensing problem have been proposed and are

publicly available. Starting with `1-magic [9] that implements some of the most common

problems as either linear or second order cone programs with a rather slow path-following

primal-dual method, over gradient projection for sparse reconstruction (GPSR) [17] to the

fast Nesterov’s Optimal Gradient Method implemented in NESTA [8]. The latter smooths

the `1 norm and iteratively reduces this barrier until convergence.

Because the product ΦΨ itself can be seen as an overcomplete dictionary for the measure-

ments, the orthogonal and the non-orthogonal matching pursuit can both be used for CS as

well. They tend to be much faster than solutions to the basis pursuit formulation, but also

less accurate thus requiring more measurement to achieve a comparable performance.
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A comprehensive list of algorithms and toolboxes beyond this short introduction is main-

tained by the digital signal processing group at Rice university [37].

Applications

Other promising applications of compressed sensing include among others magnetic reso-

nance imaging (MRI) [28], imaging with single pixel cameras using a digital micro-mirror

device [14], spread spectrum receivers or data gathering in large wireless sensor networks [27].

There are many motivations for a low measurement rate, be it a shorter exposure to ionizing

radiation of a patient, a higher throughput in a sensor network, higher bandwidth of an

analog to digital converter (ADC) – possibly below the Nyquist rate – or just a lower energy

consumption. Furthermore a random embedding can increase the decoder stability.

Outline

Within the scope of this thesis two different problems related to the concepts of sparse image

representations presented above were studied. The following two chapters present them.

The first one investigates ways to use compressed sensing for lossy but stable communication

over varying channels. The specific application of a video multicast is studied. This part of

my work was previously summarized in the paper Compressed Sensing Based Video Multi-

cast [40] and accepted for publication at the Visual Communications and Image Processing

(VCIP) conference 2010. It forms the basis for the following chapter.

The second problem consists of reconstructing an image by using a coarsely quantized view

and a previously known second view of the same scene at high quality. It is applied to stereo

image pairs that were distributedly coded with JPEG, but jointly reconstructed. This scheme

improves the dequantization while remaining consistent with the widely adopted JPEG image

standard. This part of my work was also summarized in a short conference paper entitled

Joint Decoding of Stereo JPEG Image Pairs and submitted to the International Conference

on Image Processing (ICIP) 2010 as [41]. It is presented in chapter 3.

This thesis is concluded with a brief discussion of possible future work in chapter 4.
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Compressed Sensing Based Video Multicast

2.1 Motivation

We consider a scenario where a video is simultaneously transmitted to multiple receivers

with different, wireless channels. In this configuration it is difficult to allocate a fixed rate

for the encoder to guarantee a low distortion for all receivers.

Following a traditional approach we would separate the source and channel coding. Shan-

non’s separation theorem [43] largely simplifies the problem of optimal coding by splitting it

into two different subproblems and still guarantees optimality to be achievable. Even though

it holds in many cases, it does not apply to the case of multi-user channels as we target it.

Because such schemes are designed for a given channel capacity, all receivers who can meet

the requirements will be able to decode the content at the same suboptimal quality imposed

by the encoding while some with less favorable channels will fail to decode it at all for most

of the time. Because of the design of both variable length codes and video codecs such as

MPEG, even a single error can propagate for a long time and lead to a big distortion. This

behavior starts rather abruptly when the channel capacity falls below the value used for the

source-coder design and appears in all separation based multicast schemes. It is commonly

referred to as cliff effect. Additionally, parameters of a wireless channel such as Signal to

Noise Ratio (SNR), bandwidth or losses are prone to vary significantly between different

receivers and over time, which further complicates the optimal resource allocation at the

encoder.

This cliff effect and the varying channel statistics have led to the idea of joint source-channel

coding (JSCC) where the source symbols are directly mapped to channel symbols by a single

encoder. In this case a part of the distortion will be introduced by the channel rather than

the encoding, leading to a graceful degradation with respect to the channel capacity. As

videos are suitable for lossy compression it would be desirable to have a scheme which allows

any receiver to decode the content with a quality corresponding to its channel and that at

the same time remains efficient.

One way to practically implement a JSCC solution for video multicast was recently presented

under the name SoftCast [25]. Its main idea is inspired by Peterson [35] who showed that

a group of coefficients sj with variance σ2
j should be scaled proportionally to σ

−1/2
j (at the

same time obeying some constraint on the total energy) before analog transmission through

19
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an additive white Gaussian noise (AWGN) channel in order to suffer the least distortion.

SoftCast first decorrelates an image by applying a discrete cosine transform and then applies

above scaling to groups of coefficients depending on their variances. They then compare

their scheme with MPEG 4 and an MDC scheme at different, but fixed rates. They claim

to have distortions comparable to the best out of those schemes at a given rate while having

smooth degradation across rates. However, only intra-coding is used by the approach and

for the comparisons.

An alternative way to multicast to receivers with different channels is unequal error protec-

tion [52]. The source is encoded into two or more streams of decreasing importance, starting

for instance with the motion vectors or a low resolution stream. The channel coding is then

chosen such that the basic stream is decodable by all receivers thanks to strong error cor-

recting codes, while the enhancements have less protection and can only be decoded after

high capacity channels. This does not lead to a continuous degradation but rather introduces

multiple “cliffs”. Our goal with JSCC should however be to achieve a continuous degradation

curve.

The main contribution presented in this chapter is a practical scheme for wireless video

multicast. It is based on the theory of compressed sensing to generate measurements of equal

importance from the content. We choose a compressed sensing based approach because it

allows us to recover signals with a sparse representation even if some of the measurements

are lost or distorted.

We first compare various combinations of measurement matrices in experiments for this

application and evaluate the performance with respect to noise and loss levels in the channel.

We further introduce two possible enhancements to the basic scheme. In the first case the

encoder transmits additional side information about the distribution of the sparse coefficients

which helps to improve the reconstruction quality. In the second the inter-frame correlation

of videos is exploited at the decoder side without changing the encoder design. Finally we use

simulations to compare the scheme with the above mentioned SoftCast as a main benchmark

and find better results for some region of operating points.

This chapter is based on the brief introduction to compressed sensing given before in Sec. 1.4.

The proposed scheme is described in in the following section and followed by an analysis of

the experimental results in Sec. 2.3.

2.2 Proposed Scheme

In our scheme (Illustrated by Fig. 2.1 on the next page) a single encoder transforms a video

into a number of measurements through multiplication with the random measurement ma-

trix. These measurements are then directly transmitted towards the receivers over possibly

very different channels distorting the signal with losses and noise. Finally each decoder will

use the measurements he receives to reconstruct the sparsest signal in some basis such that
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Figure 2.1: Flow graph of the proposed scheme (only one channel and receiver shown).

the decoded signal is compatible with the measurements. Most natural images are compress-

ible in some bases, given by the DCT, wavelet transform or possibly others. This implies

that a sparse approximation exists and makes our approach possible.

2.2.1 Encoding

In our application a grayscale image is split into subblocks of size n×n. A block is represented

as a column vector of length N = n2 by concatenating its columns. The encoder works on

each block x of each frame of a video. It first subtracts the mean value from a frame and then

applies the full random matrix R ∈ RN×N to x. Those measurements are then interleaved

across blocks and assembled into packages. This ensures that lost packages will not erase a

single block completely but rather affect all of them evenly.

We have evaluated different random matrices R and sparse bases Ψ; in particular matri-

ces drawn uniformly from a Gaussian distribution (called G in the following) with Gij ∼
N (0, 1)/

√
N , G1 derived from G by normalizing each column, G⊥ an orthogonalized G,

B drawn from a Bernoulli distribution with Bij ∈ {−1, 1}/
√
N and a Hadamard trans-

form H. In terms of sparse bases we compared the discrete cosine transform basis D and a

Haar Wavelet basis W; both of them can be implemented with an efficient algorithm.

For the analysis of our approach we assume two possible channel models. In both cases we

use direct analog transmission of the measurement values, i.e. no quantization or other coding

is applied. First, we depart from a channel with Additive White Gaussian Noise (AWGN) in

which packages are erased at random with a loss rate p. After a full set of N measurements

is created, these two distortions are supposed to interfere as follows: First, noise is added to

the full measurements such that the Channel Signal to Noise Ratio (CSNR) satisfies

CSNR =
‖y‖22
‖e‖22

exactly in order to make results easier to compare. Finally a fraction M = b (1− p)Nc of

the measurements are kept and handed over to the decoder.

Second, we also apply a noiseless block erasure channel, as it could arise from a best-effort

network. For the noisy case described above this corresponds to the limit of an infinite

CSNR.
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Figure 2.2: Flow graph of a scheme with reweighting.

Both channel models act directly on the baseband, no assumptions about modulation are

made. This allows us to compare the trade-off between noisy and lossy channels as will be

discussed in Sec. 2.3. Possible reasons causing package loss include collisions occurring for

some receivers or congestion at the transmitter side.

2.2.2 Decoding

Before the measurements are decoded we need to compose the random matrix for each block

according to the package loss pattern and then estimate the noise level.

If the encoder used the random matrix R ∈ RN to generate the measurements and among

the N measurements of a given block the ones indexed by the set S ⊆ {1, . . . , N} with

cardinality |S| = M were received, we construct the measurement matrix

ΦT =
{

(RT)i
∣∣ i ∈ S }

from the rows of R indexed by S. The received measurements are deinterleaved and arranged

accordingly into ŷ. We assume that R is either known to all parties of the system or

communicated by the transmitter by means of a simple random seed.

A noiseless channel would lead to a zero error vector, but this will not be the case for

a practical channel. Hence we will use the (PQC) decoding algorithm together with the

estimate for ε from (1.10). Then ŝ is calculated by solving (PQC) using the `1-magic [9]

implementation for Matlab. Finally ŝ is projected back into the pixel domain and x̂ is

displayed.

So far we have only assumed that an image can be sparsely approximated in some fixed

bases. But we can also use previous knowledge about the coefficient distribution as well as

the inter-frame correlation of videos to improve the performance of this basic scheme. These

two modifications to the decoder will be presented in the following.

Reweighted decoding

In Sec. 1.4.5 on page 15 we have shown how previous knowledge about the distribution of

the image coefficients in the transform domain can improve the performance of the decoder
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Figure 2.3: Flow graph of a scheme with 2 frame inter decoding.

by weighting the coefficients unevenly.

The coefficients of natural images in the DCT domain are unevenly distributed. This allows

us to use the variance of each coefficient in a frame as an estimate for its magnitude and

plug these values into the reweighted minimization as follows:

Wii ∝
1√
E(s2

i )
.

Unfortunately the sorted magnitudes of the coefficients of natural images in the transform

domain do not decay sufficiently fast to use this approach iteratively. But their low frequency

components are usually still dominant over the high frequency components. The estimated

coefficient magnitudes are unevenly distributed and remain consistent within a given frame.

Figure 2.2 illustrates the modified scheme. In contrast to the basic scheme, the encoder now

also needs to apply the transform Ψ to all blocks of the image which adds to its complexity

and will also fix the choice of Ψ for all decoders that use this side-information. We notice,

that the weights need to be transmitted from the encoder to all the receivers and hence

we need a lossless side-channel for this scheme to work. But the rate required for this is

small: If a frame is divided into B blocks then a fraction of 1/B of the total data will be

required for this side information, remaining below 1% for practical block-sizes. The fact

that these variances vary only slowly from one frame to the next can further reduce the

rate. Furthermore the SoftCast scheme we compare to assumes the same information to be

available at the decoder.

Inter-frame decoding

Without increasing the encoder complexity – or even changing it at all – we can use the

correlation among frames to decode multiple frames together. This follows the paradigm

of Distributed Video Coding (DVC) . The following related ideas have been studied previ-

ously.

Prades-Nebot et al. [36] propose a CS based scheme for video transmission. For each trans-

mitted block three modes with different rates are possible. First, a block can be entirely
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skipped if it does not or only slightly varies from the previous frame. Second, a small set of

CS measurements can be transmitted. This enables the receiver to do motion-estimation in

the compressed domain and to insert the appropriate block from the previous frame. Finally,

the receiver can request a full set of measurements via a feedback channel to recover a block

directly if the other modes fail. This scheme requires every second frame to be intra coded

to prevent error-propagation and an important part of its gain is due to frequent use of the

first two modes.

Marcia et al. [30] study joint CS reconstruction of coded aperture images. Because there is

no motion between the images, they can successfully apply a joint sparsity model.

A predictive coder can benefit from the fact that the residue after a reasonable prediction

has lower energy than the frame itself and can code it in a more compact fashion. But the

residue is a dense, unpredictable image and has much less structure than a natural image

and no universally good basis can be given. For this reason it will be less sparse in a basis

designed for natural images and we would actually need more coefficients to reconstruct the

residue than we would require for the image itself. Thus it is not a favorable option to apply

CS directly to the difference of two images or a residue and we will need to find a better way

of exploiting the correlation between consecutive frames.

In the following we will use a joint sparsity model to exploit it. Although subsequent frames

of a video are usually highly correlated, this correlation is subject to motion. Therefore we

can expect a joint sparsity model to be successful only if this motion is reflected by some

sort of geometric transform between the bases of each frame. The fact that the compressed

sensing model allows a decoder to independently choose any matrix Ψ as long as s remains

sparse makes this approach possible.

We will treat two frames x1 and x2 together, but this easily extends to three or more as

well. We assume a joint sparsity model of a common sparse component plus innovations,

commonly referred to as JSM-1 following the framework presented in Sec. 1.4.5.

The main idea is to first estimate the local motion between two frames using an intra-decoded

frame 1 as a reference for the next frame 2. For each block j of frame 2 we are about to

reconstruct, we take all possible patches in frame 1 that are supported around block j as

spanning vectors for a sparse representation. We call the matrix constructed from these

patches Ψ(j). It will not form a complete basis, but if the two frames are related by motion

one of its elements will be highly correlated with the measurements of that block. The index

of this best atom will give us an estimate for the motion vector v between the two frames

around block j.

After the motion is estimated based on two independent reconstructions a joint basis can

represent two concatenated blocks (one from each frame). This joint basis consists of a

common part which supports both frames using a given basis for the first and a shifted

version of it for the second frame. It is augmented with two separate bases for each frame.
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Figure 2.4: An example of an overcomplete dictionary Ψ(j) for inter frame decoding containing a

common and two disjoint parts. A shift of v(j) = (−5, 4)T is applied for the second

frame.

This makes the joint basis overcomplete but possibly leads to a higher sparsity of s. Finally

we get

Ψ(j) =
1√
2

(
Ψ

√
2Ψ 0

Tv(j)(Ψ) 0
√

2Ψ

)
(2.1)

where the transform Tv(j)(·) denotes the shift by the motion vector v(j). The two con-

catenated blocks can then be represented by a set of joint (sjoint) and independent (s1, s2)

coefficients as follows:

x̂joint =

(
x1

x2

)
= Ψ s = Ψ

 sjoint

s1

s2

 .

Each of the steps is performed locally for each block and the block size will also determine

the search space of the motion estimation.

We use a circular shift for the transform T (·) in the joint optimization. This provides the

two advantages that we can guarantee a high level of incoherence without the need to remove

duplicate atoms and that it can be implemented using a fast transform. Figure 2.4 illustrates

a possible Ψ(j).

2.3 Experimental Results

We have implemented our scheme in Matlab and evaluated it at various operating points

defined by the channel loss rate p and the CSNR. This allows us to better understand how

the trade-off between noisy and lossy channels acts on CS decoding. For comparison the

Peak Signal to Noise Ratio (PSNR) was used, a standard measure for image applications. It

is defined as

PSNR = 10 log10

maxi{xi}
1
N ‖x̂− x‖

2
2

.

The minimal PSNR for a uniformly gray image is approximately 10 − 15 dB and visually

good quality can be claimed around 25 dB and above.

All graphs in the following figures compare the image PSNR for different operating points

in this parameter space.
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Figure 2.5: Comparison of different matrices Φ and Ψ as described before: ( ) R = G⊥,Ψ =

DT, ( ) R = H D,Ψ = DT and ( ) R = G⊥,Ψ = WT. The graphs show

results at different noise levels where each compares the image PSNR verus the loss

ratio p for the sequence football.

2.3.1 Basic scheme

For all the investigated combinations of R and Ψ, experiments were run for a wide range

of these two parameters in order to better understand the trade-off. They are visualized in

Fig. 2.5.

The best performance is achieved when an orthogonal random matrix (G⊥) is used together

with decoding into the DCT basis D. It is slightly worse for just a random Gaussian ma-

trix (G) and for one with orthonormal columns (G1); however, the differences are quite

small and graphs are omitted. The same holds if the encoder additionally performs a decor-

relating transform (i.e. R = G D); this is to be expected from the CS theory because the

combined matrix Φ Ψ remains the same. On the other hand when we use the deterministic

measurement matrix H, results drop by around 1 dB for almost all operating points.

Concerning the choice of the sparse representation we observe that a wavelet basis W per-

forms worse than the DCT. We can also see that no cliff effect appears and we achieve a

graceful degradation with respect to both dimensions of distortion. Hence one of the prin-

cipal design goals is met. The decay with respect to the loss rate p is smooth, but faster

than we anticipated. In most cases we could further improve the performance slightly by

operating on bigger blocks, but considering the higher complexity this is a less attractive

option.

2.3.2 Reweighting

Figure 2.6 shows the achieved improvements for various operating points. We see that at

higher loss rates p, reweighting improves results by around 1–2 dB in PSNR while penalizing

the results at full measurement rate slightly. But the choice of the decoding method is left

to the decoder which could switch back to unweighted decoding at those operating points.

(However, the decision to do so would need to be taken blindly.) The same holds in the rare

cases where the reweighted optimization does not converge.
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Figure 2.6: Comparison of ( ) default `1 minimization with ( ) reweighting. The graphs

show results at different noise levels and each compares the image PSNR vs. the loss

ratio p for the sequence football.
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Figure 2.7: Comparison of ( ) default `1 minimization with ( ) inter-frame decoding for

two consecutive frames of the sequence football. The graphs show results at different

noise levels and each compares the image PSNR vs. the loss ratio p.

2.3.3 Inter-frame decoding

Our implementation uses blocks of size 8× 8 for both motion estimation and reconstruction.

Figure 2.8 illustrates the reconstruction of one block in the joint reconstruction step. There

we see the distribution of the coefficients among the joint and the two distinct bases. If we

consider that videos have usually a high correlation between frames, then – in the spirit of the

Slepian-Wolf theorem [44] – it should be possible to get a considerable performance gain from

inter-frame decoding alone. Nevertheless our results (shown in Fig. 2.7) are less favorable.

Overall we achieve only little gain for low CSNR and improve by up to 1 dB for better

channels even in the presence of losses. Although experiments show that an overcomplete

basis as given by (2.1) leads to slightly better results than a complete one, it also increases

the complexity. We conclude that a more sophisticated joint sparsity model or a different

approach should be sought after in order to achieve a more significant performance gain.

2.3.4 Comparison with “SoftCast”

Finally we compare our best configuration (Reweighted decoding applied to R = G⊥,Ψ =

D) with SoftCast ; the R-D curves are shown in Fig. 2.9 and the corresponding visual com-

parison in Fig. 2.10 for a CSNR of 25 dB.
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Figure 2.8: An arbitrary block being reconstructed into the overcomplete dictionary Ψ(j). Part (a)

shows the sparse coefficient vector split into the three parts of the joint basis and the two

separate bases. The other subfigures show the same block for both frames on top of each

other as follows: (b) – (d) the joint and distinct contributions respectively, (e) the sum

of them and (f) the original.
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Figure 2.9: Comparison of ( ) our scheme with ( ) SoftCast. The four graphs show results

at different noise levels and each compares the image PSNR vs. the loss ratio p for the

sequence football.

Our scheme is competitive at high loss rates p and low channel noise. However, the SoftCast

scheme is clearly superior in the contrary cases of low losses and for high noise. The fact that

our scheme lies behind SoftCast at low losses is less surprising considering that we perform

only direct random projections at the encoder where SoftCast is based on optimal scaling as

the essential encoding step. On the other hand we achieve a performance gain in the order

of 2 dB over their scheme starting from only 10–20% loss.

2.4 Discussion

We have proposed a scheme for wireless video multicast based on compressed sensing which

does not suffer from a cliff-effect. We compared our results with a recent scheme designed

for the same purpose and find competitive results in the case of high losses and low noise.

Furthermore extensive experiments were deployed to compare various measurement matri-

ces.

The advantage of our scheme is a non-adaptive, simple encoder. It automatically scales



2.4 Discussion 29

p = 0.0

O
ur

 S
ch

em
e

PSNR 36.0 dB

p = 0.2

PSNR 30.6 dB

p = 0.4

PSNR 26.5 dB

S
of

tC
as

t

PSNR 43.0 dB PSNR 27.5 dB PSNR 22.8 dB

Figure 2.10: Visual results of our scheme for frame 70 of the Football sequence at a CSNR of 25 dB.

Compare these results with Fig. 2.9.

with the number of receivers and does not require solving any resource allocation problem.

Additionally this introduces the interesting property that opposed to the traditional approach

where the decoder is fully specified and encoding is left for various implementations, here

a decoder has the free choice of its method, in practice the choice of the sparse basis and

a correlation model. This adds a certain universality and makes the setup future proof.

The main drawback is a high complexity at the receiver side, that is required to solve the

optimization problem. This makes the implementation of a real-time application for higher

resolutions challenging. However, greedy pursuits could be employed instead of BP at the

expense of a higher measurement rate.

As previously investigated by Goyal [19] and others, CS can not be expected to be optimal

for compression in the information theoretic sense when applied to data that is already fully

sampled. Nevertheless we conjectured a higher overall gain to be achievable in such a JSCC

scenario than what we found through experiments.

By looking at the results for inter-frame decoding, we have to conclude that the proposed

scheme built on the joint sparsity model is most likely not optimal. Future work could try

to better exploit this correlation to achieve a higher reconstruction performance. Either

by improving the decoding – model-based compressive sensing [3] could be considered for

instance – or by changing the encoder to apply the random coding to a group of frames at

once.





Chapter 3

Joint Decoding of Stereo JPEG Image Pairs

In this part we propose and study a second application of sparsity based image reconstruc-

tion methods. Because we would like to improve on the rather small gain from inter-frame

decoding found in the previous chapter, we study a case where a similar but simpler cor-

relation is present. Furthermore the effects introduced by quantization was left out in the

context of compressed sensing before, although it could be a necessary step in practice. For

these reasons we investigate the joint decoding of quantized stereo image pairs and focus on

how the correlation between them can be exploited with sparse image representations.

3.1 Motivation

visible

Image plane

invisible

partly occluded R

L

Cameras B

Figure 3.1: Illustration of the stereo geometry shown for a planar cut through the scene with a

background and a foreground object and parallel cameras with a baseline B.

Stereoscopic imaging existed for a long time and might gain popularity again in the digital

world with stereo enabled screens and graphic cards becoming more widely available on

the consumer market, due to better hardware such as auto-stereoscopic displays, shutter or

wavelength dependent glasses which offer a sufficient viewing comfort level. Furthermore,

emerging high definition content will even more depend on efficient compression methods

than it is already the case today.

Stereo perception is usually achieved by simultaneously presenting two images of the same

scene taken from two slightly displaced positions to both eyes. We will denote these two

31
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Tsukuba (left) Tsukuba (right) Sekhmet (left) Sekhmet (right)

Figure 3.2: The two stereo image pairs Tzukuba (from the Middlebury stereo vision dataset [39])

and Sekhmet (taken with a commercial stereo camera) that were used for the following

experiments.

images with left (L) and right (R). These images are taken with two parallel cameras at a

distance B (the baseline) which introduces a an apparent displacement of the objects called

parallax. The depth information directly translates into the disparity that relates the two

images and in the case of perfectly rectified views the possible transformations reduce to

horizontal shifts only. This is illustrated by Fig. 3.1 on the preceding page for an idealized

situation. Because both images represent the same reality they are highly redundant (as

illustrated by the examples in Fig. 3.2) and accordingly we can expect significant compression

ratios to be achievable. We can see how occlusions are introduced around object boundaries.

This leads to information that is only present in one view while most of the scene is equally

captured by both cameras.

We can draw a parallel to motion estimation and compensation in video compression with

the simplification that no physical motion is present in the scene. Because only the cameras

are displaced all movements can be explained by rigid body motion. Therefore a predictive

coding scheme could be employed by intra coding the first image, followed by the disparity

field for a predictor and the residue. Such a traditional coding has previously been proposed

by Perkins [34] for example. But the proprietary transmission format required by such an

approach is unlikely to replace established general purpose image formats and it is worth in-

vestigating how much we could still improve without departing from JPEG encoding. Indeed,

today’s digital cameras are widely equipped with a JPEG encoder and stereoscopic image

pairs are encoded as separate JPEG images by most applications, be it JPEG Stereo (JPS),

Multi-Picture Object (MPO) [1] or others; thus they directly double the bandwidth require-

ments. Cameras also have a limited amount of processing power which further motivates a

distributed coding scheme.

We propose a joint decoding strategy in order to enhance the quality of the reconstructed

image pairs. Overall, the joint decoder allows for a lower overall bitrate while maintaining

similar quality for both views. We cast the reconstruction problem as a regularized convex

optimization problem that is constrained by consistent reconstruction conditions. We show

that proper regularization permits to increase the accuracy of the disparity estimation, hence

to obtain better reconstruction quality.
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We consider an asymmetric coding scheme where one of the images is encoded at high

quality, the other one at a reduced quality. Studies by Seuntiens et al. [42] and others

indicate that the human brain can tolerate a fair amount of asymmetric image quality for

stereo viewing such that the perceived quality lies between that of the two views. Such an

asymmetric scheme could also be of interest to applications where the second view is not

always required, notably if no stereo display is available.

This work is related to the distributed coding framework, where joint decoding is used to

reconstruct correlated signals that have been independently encoded. However, we do not

work here on the coding strategy, but rather rely on a classical encoding solution. The joint

reconstruction of compressed images has been considered also in the compressed sensing

community, where different approaches have been proposed to represent images or parts of

them as a sparse linear combination of other images assembled in a dictionary. If such a

representation exists, it can under some conditions also be recovered in a stable way from

linear projections onto a set of random vectors that reduces its dimensionality.

This has led to applications in video coding where the dictionary is composed of blocks from

a previous frame [36], face recognition where the candidate faces build the dictionary [51], or

multi-view representations [48]. In our solution a reconstructed block will be based on local

dictionaries of candidate blocks. Alternatively, super-resolution reconstruction from image

sequences has a similar objective of quality enhancement with multiple compressed images.

It tries to either estimate a dense displacement field or to fuse different frames of a video

together to enhance its quality. This is often formulated as an inverse optimization problem

with a smoothness constraint on the displacement field (e.g. [23] and [50]), but unlike here

more than two images are usually involved.

3.2 Proposed Scheme

3.2.1 Encoding

JPEG is a block-based still image compression scheme that compacts the image energy in a

small number of coefficients and introduces losses mostly at high frequencies where they are

visually more acceptable [33]. This is done by applying the two-dimensional DCT denoted

by D, followed by scalar quantization with up to ten times bigger step sizes at the highest

frequencies than for the lower ones. The quantization step sizes are given by a table q. A

typical quantization table is given in matrix form by Eq. (3.1) below. If b is an image block

and y = Db its representation in the transform domain, then quantization can be written

as

yi = qi

[
yi
qi

]
where [ · ] denotes rounding to the nearest integer. Because of the lossy nature of JPEG

encoding we have a certain freedom to fill in the coarsely quantized coefficients from the

other image at higher quality.
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q50 =



16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99


(3.1)

In the following we will always use the left image as the intra coded reference and the right

one as the compressed image that we want to enhance. We limit our studies to luminance

images only, but this extends to the other color components as well, because they are coded

in the same fashion.

3.2.2 Decoding

The compressed version of the right image defines a set of possible solutions for approximating

the original image version, which are all consistent with respect to the compressed one,

meaning that they would yield exactly the same JPEG bitstream after a recompression

using the same quantization matrix. This is the range we will operate in to reconstruct the

image. Although a midpoint or a centroid dequantization followed by an inverse DCT will

likely minimize the reconstruction error if no further information is present, they are not the

only choices within the aforementioned admissible region. Thus we will use the compressed

image only to formulate a constraint on the output image. Our scheme operates on the

blocks of 8× 8 pixels defined by JPEG. We can formulate this elementwise constraint in the

transform domain as ∣∣∣D(b̂(i) − b(i)
)∣∣∣ � 1

2
q , (3.2)

where b(i) is the ith block in the pixel domain after JPEG compression, b̂(i) is the estimate

of that block after enhancement and the element-wise inequality |xj | ≤ yj ∀ j is written as

|x| � y.

Now we build a dictionary Ψ(i) composed of possible candidate blocks ψ
(i)
j from the reference

image. Figure 3.3 illustrates the origin of the dictionary for block i. They are gathered

from a range from 0 disparity up to the maximum disparity Dh in horizontal direction

around the location in question. We further extend this range to 2Dv + 1 shifts in the

vertical direction to accommodate slight misalignments of the two cameras. Each of the

totally D = Dh(2Dv + 1) dictionary elements ψ
(i)
j now has an associated disparity vector

dj ∈ {0, . . . , Dh} × {−Dv, . . . , Dv} that will be used later on to build the global disparity

field.
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Figure 3.3: Schematic view of the proposed scheme. Illustrating the separate encoding, the composi-

tion of the dictionary for a given block i from the reference view and the reconstruction

of that block.

We now want to represent a block b(i) as a linear combination of dictionary elements with

the coefficient vector s(i) ∈ RD as

b(i) ≈
∑
j

ψ
(i)
j sj = Ψ(i)s(i).

In general it is not possible to find such a decomposition that also satisfies (3.2). Thus we

introduce the slack variables b̂(i) that are constrained as above and approximated by a linear

combination over {ψ(i)
j }.

3.2.3 Regularization

However, this inverse problem is still ill posed and we can regularize it in two ways. First,

only a small number of the dictionary elements will contribute – ideally only a single one –

and we can thus require s to be sparse. Although a high sparsity is best described with a

low `0 pseudo-norm ‖s‖0 = |{sj |sj 6= 0}| this is not a convex function and would lead to a

problem of combinatorial nature. Consequently we approximate it by the convex `1 norm

‖s‖1 =
∑

j |sj | .

Second, we can assume the disparity field V to be piecewise smooth because disparity dis-

continuities will occur only at object boundaries. Furthermore, not every block contributes

an equal amount of depth information. For this reason we can improve the reconstruction

by enforcing a low total variation. We first calculate the disparity v(i) for each block as the

weighted sum of the contributing disparities

v(i) =
∑
j

dj s
(i)
j

and use the total variation of a scalar field as defined by Eq. (1.4). Because v = [vx vy]
T has

two components – one for the vertical and one for the horizontal displacement – there are

also two total variations that we add together for the minimization.
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Figure 3.4: This experiment on a 288× 288 pixel image of Sekhmet taken with a commercial stereo

camera illustrates our method. Results for three different JPEG quality settings with

and without enhancement are followed by the original left and right view and enlarged

details from the second image pair. We can improve the visual quality even if PSNR

results drop and find less blocking artifacts if the total variation of the disparity field is

minimized. Compare these results with Fig. 3.6.

This last step makes our problem a global one involving all blocks at once. In the following,

all N blocks of an image are concatenated such that bT = [b(1)T · · · b(N)T] and the transform

D becomes a block diagonal matrix.

Putting it all together we obtain the objective function

b̂ = arg min
b̂

∥∥∥b̂−Ψs
∥∥∥2

2
+ λs ‖s‖1 + λv

(
‖vx‖TV + ‖vy‖TV

)
subject to

∣∣∣D(b̂− b)∣∣∣ � 1
2q.

(3.3)

The parameter λv is the Lagrange multiplier weighting the importance of a smooth disparity

field. The second parameter λs acts on the sparsity of the signal and trades off fidelity versus

sparsity. All three terms in (3.3) scale with the number of blocks N , hence we can set the

relative values of λs and λv independently of the image size.

The choice of λs is crucial, because on one hand a big value makes s approach 0, while on

the other hand a small value can lead to a non-sparse s and a blurred result. We choose it

such that the terms of the objective function are of similar magnitude and verify empirically

that λs = 5 × 10−2 leads to good results for the tested images and a dictionary of size

D = 13× 9 = 117. The choice of λv is less critical and we set it to λv = 1× 10−2. All results

presented in the following were obtained with this same set of parameters.

In order to solve (3.3) we use the cvx package for Matlab [7, 20]. Larger images are further

partitioned into independently reconstructed regions of smaller size to keep the memory

requirements manageable. Solving this problem is quite involved, but it scales linearly with
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Figure 3.5: Rate-distortion comparison of JPEG ( ) and joint decoding ( ) for the

Tsukuba stereo test set (192 × 192 pixels). Also shown is the curve for unconstrained

`1 minimization ( ) given by Eq. (3.4).

the image size. An accurate knowledge of the maximum disparity reduces the number of

variables and thus the runtime of the optimization.

3.3 Experimental Results

In this section we analyze the performance of the joint decoding algorithm. As we can see

from Fig. 3.4 we are able to enhance an image with correctly positioned details even if the

right image is highly compressed. The ubiquitous blocking artifacts introduced by JPEG

disappear and texture is added. Despite the small improvement in peak signal-to-noise ratio

(PSNR) at low bitrates, the visual quality of the images improves clearly and in a consistent

way. The enlarged areas show that even small details can be recovered that would simply be

blurred out by JPEG. For medium bitrates (JPEG quality around 50) the PSNR improves by

about 1 dB on average and more as the rate-distortion comparisons in Fig. 3.5 and Fig. 3.6

highlight. In the optimal region we can accommodate a bitrate saving of 20% and above for

the right view at a similar decoding quality.

Regions that are occluded in the reference view cannot possibly be reconstructed by this

method. In the middle range (Quality 50 – 75) only few blocks have a PSNR decrease and

they lie usually in such regions around disparity discontinuities as well as the very right

border of the image. Nevertheless, ghosting artifacts appear seldom.

Even though the results shown here were obtained with well aligned image pairs, additional
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Figure 3.6: Rate-distortion comparison of JPEG ( ) and joint decoding ( ) for the right

view of the Sekhmet image from Fig. 3.4 (288 × 288 pixels). Also shown is the curve

for unconstrained `1 minimization ( ) given by Eq. (3.4).

experiments (Fig. 3.7) after multiple pixel shifts and a 2◦ rotation still exhibit good perfor-

mance.

Furthermore, we study the influence of the individual parts of the optimization. First, we can

set λv = 0 to remove the regularization of the disparity field. We find that at low bitrates

the compressed image might not contain enough details to reliably find a corresponding

block in the reference view and it is in this region where the additional regularization of the

disparity field leads to a further improvement. Although the increase in PSNR is only little,

less artifacts are visible. The last part of Fig. 3.4 shows such a case. Second, we can also

compare our method with the unconstrained `1 minimization

b̂ = Ψŝ, ŝ = arg min
s

∥∥b−Ψs
∥∥2

2
+ λs ‖s‖1 . (3.4)

This tends to saturate at some PSNR level, but also gives an improvement at low rates as

seen from Fig. 3.5 and Fig. 3.6.

Finally, we should note that in these experiments the reference image was always given at

full quality. If the reference itself is compressed the improvements will naturally decrease;

however, reference images at a quality setting of 80 and 90 could still be used successfully,

as it has been confirmed by additional experiments.
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Figure 3.7: Rate-distortion comparison of a well rectified image ( ) and a non rectified one

( ) after a multiple pixel shift and with a 2◦ rotation of the right view for Sekhmet.

3.4 Discussion

We have presented a joint decoding solution for stereo image pairs. This method permits

to reduce the bitrate of one view of a stereo image pair that is based on two separately

coded, standard compliant JPEG images, but produces visually much better results than

separate decoding. The only assumptions we make about the image pair is a relatively good

alignment and a known maximum disparity. However both are only required to reduce the

runtime of the algorithm. Because the images from stereo cameras have a relatively short

baseline (based on the average eye distance of about 6 cm which is considerably shorter then

the usual distance to the closest object) the search-space can be kept quite small. Due to

the multiple objectives in the minimization, a careful tuning of the parameters is crucial.

The optimization is still fairly slow and a tailor made minimization algorithm instead of

the general purpose solver could clearly bring an improvement. We also note that because

the DCT is a unitary transform, the whole minimization can be directly formulated in

transform domain only. This makes it unnecessary to repeatedly apply the transform during

the minimization and increases the speed by a factor of 2 and more. It would certainly be

desirable to dispose of a symmetric scheme where no high resolution reference image would

be required but two compressed view could be jointly decoded while remaining consistent

with the quantization.

One could also ask why we did not enforce a TV constraint on the image itself. Although

no such experiments were carried out, the complexity would increase by quite a bit because
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the image is 64 times denser than the motion field and a low TV could again remove the

texture that we wanted to add back to the compressed image.

We showed that it is possible to bring the quality of a second view closer to that of the

reference image and simultaneously mitigate the effect of JPEG compression artifacts. We

studied only natural images of Lambertian scenes; it is to be expected that image pairs with

specularities, reflections, transparent objects or other non-Lambertian features would benefit

less from the enhancement.

The presented scheme provides good results for a viewing application because the two images

will be of comparable quality. On the other hand it might not be a good preprocessing step

for vision applications, although the coarse depth maps obtained as a side product indicate

that a fair amount of disparity estimation can still be done after compression.



Chapter 4

Conclusions

We have studied two applications that greatly profit from the fact that sparse representations

of images exist and can be found efficiently. Such representations offer an elegant way to

formulate a problem and the available tools to solve them are versatile enough to attack a

wide range of problems in a similar fashion.

The introduced video multicast scheme based on compressed sensing has the nice property

to enable a future-proof and universal coding scheme. The encoder has little to worry about

the structure of the signal or the properties of the channel. At the same time the decoder

can use all its knowledge and computational power to reconstruct the signal. Such a scheme

exploits the lossy compressibility of the signal, and at the same time makes it possible to

recover in a stable way from errors, thus forming a practical joint source-channel coding.

A question raised in the first part of this work is how further correlation models could be

integrated with a compressed sensing decoder to better exploit inter frame correlation. The

approach inspired by joint sparsity model yielded rather small improvements and exploring

better methods of coupling CS decoding with a correlation model could pay off. Future

work could address this, as well as other channel and distortion models. It would also be

of interest to study how unevenly introduced errors affect a CS based image communication

scheme and how they can be mitigated. They could for instance be introduced if a signal is

transmitted over two or more channels with different noise levels or by quantization.

This questions have also led us to study a simpler case of recovery from quantization for a

pair of correlated images. We have studied a way to reconstruct an image from coarse and

uneven quantization by representing it in a dictionary of image patches and with proper

regularization such that it remains consistent with the quantized version. This work could

possibly be extended to decode both images in this fashion, ideally in a symmetric way, or

by employing dictionary learning.

Overall, sparse signal approximations in overcomplete dictionaries make a wide range of

applications possible and the future will show us what more can be achieved with them.
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